首頁  技術(shù)文章  橢偏儀在位表征電化學沉積的系統(tǒng)搭建(三十一)- 單波長實時監(jiān)測

橢偏儀在位表征電化學沉積的系統(tǒng)搭建(三十一)- 單波長實時監(jiān)測

發(fā)布時間:2024-06-27 16:59:09 瀏覽量:598 作者:Alex

摘要

本章主要用設(shè)計的微流腔體進行了橢偏儀的在位監(jiān)測與分析界轩。實驗包括三個部分,一是不同電流下薄膜的沉積衔瓮;二是準在位橢偏儀監(jiān)測薄膜的沉積過程浊猾,即每沉積180s后進行300-800nm波段的橢偏儀測試,共測試了6組(180-1080s)热鞍;三是實驗是橢偏儀在位監(jiān)測薄膜的沉積過程葫慎,0-1080s,橢偏儀取樣時間約為13s薇宠。

正文


橢偏儀在位表征電化學沉積的系統(tǒng)搭建(三十一)- 單波長實時監(jiān)測


同樣選擇-0.4mA作為沉積電流,然后進行橢偏儀的單波長實時在位測量澄港,測量角度65°椒涯,測量波長380nm。


圖4-24是沉積1080s后進行SEM測試得到的薄膜表面形貌圖回梧,在1μm標尺下看到沉積的薄膜顆粒大小不等废岂,小到幾納米大到幾百納米,形態(tài)上為不規(guī)則棱柱狀狱意。和前面準在位監(jiān)測沉積1080s的對比發(fā)現(xiàn)此處得到的薄膜小顆粒更少湖苞,島狀更加明顯。


圖4-24 -0.4mA連續(xù)沉積1080s后的SEM圖


把上節(jié)層狀生長得到的平均生長速率和島狀生長得到的厚度時間關(guān)系計算得到相應(yīng)厚度和時間的變化如圖4-24(a)所示详囤。利用兩個不同厚度隨時間的變化和沉積1080s擬合得到的n财骨、k值,輸入Film Wizard軟件中模擬計算得到不同厚度下的Psi和Delta,并和實驗值進行對比隆箩,如圖4-24(b)和(c)所示该贾,其中Experiment value是在位監(jiān)測得到的橢偏參數(shù)實驗值,0.34nm/s是用層狀生長平均速率得到的模擬計算值摘仅,0.005t0.72nm/s是用島狀生長平均速率得到的模擬計算值靶庙,圖4-24(b)為Psi值,(c)圖為Delta值娃属×模可以看到實驗值和模擬計算得到的Psi和Delta值整體上的變化趨勢一致,但是在數(shù)值及峰位上存在差別矾端。對于實驗值掏击,隨著沉積時間的增加秩铆,Psi值在0-125s從32°減小到25°砚亭,在125s-500s增加,500s-1080s減信孤辍捅膘;Delta值變化趨勢和Psi一致。層狀生長模擬計算的Psi值整體上比實驗的小滚粟,在0-250s內(nèi)減小寻仗,250-1080s先增后減,變化不明顯凡壤;Delta值整體上比實驗值小署尤,在0-150s內(nèi)減小,150s-1080s先增后減亚侠。島狀生長模擬計算的Psi和Delta值整體和層狀生長的比較相似曹体,在500s-1080s基本重合。和層狀模式相比箕别,在0-500s數(shù)值峰位存在向右移動,Psi值的波谷由250s附近移動到了375s附近钢坦,Delta值的波谷由150s附近移動到了275s附近究孕。在0-250s內(nèi)減小,250-1080s先增后減爹凹,變化不明顯厨诸;Delta值整體上比實驗值小,在0-150s內(nèi)減小禾酱,150s-1080s先增后減微酬。實驗值和模擬計算出的值對比有明顯的差別绘趋。


實驗值包含了測試過程中光經(jīng)過的所有介質(zhì)(TIO、溶液颗管、沉積物和Au/Si基底)陷遮,反映的是測試池體整體信息。模擬值用的n垦江、k及厚度用的是準在位擬合出來的沉積層的值帽馋,計算的是沉積層的信息。所以實驗值和模擬計算的Psi和Delta值會有差別比吭,這也就是上述圖線出現(xiàn)差異的原因绽族。這種差異的存在同時也驗證了建模擬合的可行性。同時衩藤,從SEM的對比發(fā)現(xiàn)吧慢,沉積得到的CU2O表面形貌差異也可能是導致上述用Psi和Delta隨時間的變化實驗值和計算值不同的原因。


圖4-25(a)層狀(0.34nm/s)和島狀(0.005t0.72nm/s)生長得到生長速率下厚度隨時間變化及單波長380nm實時在位監(jiān)測得到的橢偏參數(shù)實驗值和模擬計算值圖(b)Psi和(c)Delta



了解更多橢偏儀詳情赏表,請訪問上海昊量光電的官方網(wǎng)頁:

http://www.wjjzl.com/three-level-56.html


更多詳情請聯(lián)系昊量光電/歡迎直接聯(lián)系昊量光電

關(guān)于昊量光電:

上海昊量光電設(shè)備有限公司是光電產(chǎn)品專業(yè)代理商检诗,產(chǎn)品包括各類激光器、光電調(diào)制器瓢剿、光學測量設(shè)備逢慌、光學元件等,涉及應(yīng)用涵蓋了材料加工涕癣、光通訊、生物醫(yī)療前标、科學研究、國防距潘、量子光學炼列、生物顯微、物聯(lián)傳感音比、激光制造等俭尖;可為客戶提供完整的設(shè)備安裝,培訓洞翩,硬件開發(fā)稽犁,軟件開發(fā),系統(tǒng)集成等服務(wù)骚亿。

您可以通過我們昊量光電的官方網(wǎng)站www.wjjzl.com了解更多的產(chǎn)品信息已亥,或直接來電咨詢4006-888-532。


參考文獻

[1] WONG H S P, FRANK D J, SOLOMON P M et al. Nanoscale cmos[J]. Proceedings of the IEEE, 1999, 87(4): 537-570.

[2] LOSURDO M, HINGERL K. ellipsometry at the nanoscale[M]. Springer Heidelberg New York Dordrecht London. 2013.

[3] DYRE J C. Universal low-temperature ac conductivity of macroscopically disordered nonmetals[J]. Physical Review B, 1993, 48(17): 12511-12526. DOI:10.1103/PhysRevB.48.12511.

[4] CHEN S, KüHNE P, STANISHEV V et al. On the anomalous optical conductivity dISPersion of electrically conducting polymers: Ultra-wide spectral range ellipsometry combined with a Drude-Lorentz model[J]. Journal of Materials Chemistry C, 2019, 7(15): 4350-4362.

[5] 陳籃来屠,周巖. 膜厚度測量的橢偏儀法原理分析[J]. 大學物理實驗, 1999, 12(3): 10-13.

[6] ZAPIEN J A, COLLINS R W, MESSIER R. Multichannel ellipsometer for real time spectroscopy of thin film deposition from 1.5 to 6.5 eV[J]. Review of Scientific Instruments, 2000, 71(9): 3451-3460.

[7] DULTSEV F N, KOLOSOVSKY E A. Application of ellipsometry to control the plasmachemical synthesis of thin TiONx layers[J]. Advances in Condensed Matter Physics, 2015, 2015: 1-8.

[8] DULTSEV F N, KOLOSOVSKY E A. Application of ellipsometry to control the plasmachemical synthesis of thin TiONx layers[J]. Advances in Condensed Matter Physics, 2015, 2015: 1-8.

[9] YUAN M, YUAN L, HU Z et al. In Situ Spectroscopic Ellipsometry for Thermochromic CsPbI3 Phase Evolution Portfolio[J]. Journal of Physical Chemistry C, 2020, 124(14): 8008-8014.

[10] 焦楊.橢偏儀在位表征電化學沉積的系統(tǒng)搭建.云南大學說是論文,2022.

[11] CANEPA M, MAIDECCHI G, TOCCAFONDI C et al. Spectroscopic ellipsometry of self assembLED monolayers: Interface effects. the case of phenyl selenide SAMs on gold[J]. Physical Chemistry Chemical Physics, 2013, 15(27): 11559-11565. DOI:10.1039/c3cp51304a.

[12] FUJIWARA H, KONDO M, MATSUDA A. Interface-layer formation in microcrystalline Si:H growth on ZnO substrates studied by real-time spectroscopic ellipsometry and infrared spectroscopy[J]. Journal of Applied Physics, 2003, 93(5): 2400-2409.

[13] FUJIWARA H, TOYOSHIMA Y, KONDO M et al. Interface-layer formation mechanism in (formula presented) thin-film growth studied by real-time spectroscopic ellipsometry and infrared spectroscopy[J]. Physical Review B - Condensed Matter and Materials Physics, 1999, 60(19): 13598-13604.

[14] LEE W K, KO J S. Kinetic model for the simulation of hen egg white lysozyme adsorption at solid/water interface[J]. Korean Journal of Chemical Engineering, 2003, 20(3): 549-553.

[15] STAMATAKI K, PAPADAKIS V, EVEREST M A et al. Monitoring adsorption and sedimentation using evanescent-wave cavity ringdown ellipsometry[J]. Applied Optics, 2013, 52(5): 1086-1093.

[16] VIEGAS D, FERNANDES E, QUEIRóS R et al. Adapting Bobbert-Vlieger model to spectroscopic ellipsometry of gold nanoparticles with bio-organic shells[J]. Biomedical Optics Express, 2017, 8(8): 3538.

[17] ARWIN H. Application of ellipsometry techniques to biological materials[J]. Thin Solid Films, 2011, 519(9): 2589-2592.

[18] ZIMMER A, VEYS-RENAUX D, BROCH L et al. In situ spectroelectrochemical ellipsometry using super continuum white laser: Study of the anodization of magnesium alloy [J]. Journal of Vacuum Science & Technology B, 2019, 37(6): 062911.

[19] ZANGOOIE S, BJORKLUND R, ARWIN H. Water Interaction with Thermally Oxidized Porous Silicon Layers[J]. Journal of The Electrochemical Society, 1997, 144(11): 4027-4035.

[20] KYUNG Y B, LEE S, OH H et al. Determination of the optical functions of various liquids by rotating compensator multichannel spectroscopic ellipsometry[J]. Bulletin of the Korean Chemical Society, 2005, 26(6): 947-951.

[21] OGIEGLO W, VAN DER WERF H, TEMPELMAN K et al. Erratum to ― n-Hexane induced swelling of thin PDMS films under non-equilibrium nanofiltration permeation conditions, resolved by spectroscopic ellipsometry‖ [J. Membr. Sci. 431 (2013), 233-243][J]. Journal of Membrane Science, 2013, 437: 312..

[22] BROCH L, JOHANN L, STEIN N et al. Real time in situ ellipsometric and gravimetric monitoring for electrochemistry experiments[J]. Review of Scientific Instruments, 2007, 78(6).

[23] BISIO F, PRATO M, BARBORINI E et al. Interaction of alkanethiols with nanoporous cluster-assembled Au films[J]. Langmuir, 2011, 27(13): 8371-8376.

[24] 李廣立. 氧化亞銅薄膜的制備及其光電性能研究[D]. 西南交通大學, 2016.

[25] 董金礦. 氧化亞銅薄膜的制備及其光催化性能的研究[D]. 安徽建筑大學, 2014.

[26] 張楨. 氧化亞銅薄膜的電化學制備及其光催化和光電性能的研究[D]. 上海交通大學材料科 學與工程學院, 2013.

[27] DISSERTATION M. Cellulose Derivative and Lanthanide Complex Thin Film Cellulose Derivative and Lanthanide Complex Thin Film[J]. 2017.

[28] NIE J, YU X, HU D et al. Preparation and Properties of Cu2O/TiO2 heterojunction Nanocomposite for Rhodamine B Degradation under visible light[J]. ChemistrySelect, 2020, 5(27): 8118-8128.

[29] STRASSER P, GLIECH M, KUEHL S et al. Electrochemical processes on solid shaped nanoparticles with defined facets[J]. Chemical Society Reviews, 2018, 47(3): 715-735.

[30] XU Z, CHEN Y, ZHANG Z et al. Progress of research on underpotential deposition——I. Theory of underpotential deposition[J]. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2015, 31(7): 1219-1230.

[31] PANGAROV n. Thermodynamics of electrochemical phase formation and underpotential metal deposition[J]. Electrochimica Acta, 1983, 28(6): 763-775.

[32] KAYASTH S. ELECTRODEPOSITION STUDIES OF RARE EARTHS[J]. Methods in Geochemistry and Geophysics, 1972, 6(C): 5-13.

[33] KONDO T, TAKAKUSAGI S, UOSAKI K. Stability of underpotentially deposited Ag layers on a Au(1 1 1) surface studied by surface X-ray scattering[J]. Electrochemistry Communications, 2009, 11(4): 804-807.

[34] GASPAROTTO L H S, BORISENKO N, BOCCHI N et al. In situ STM investigation of the lithium underpotential deposition on Au(111) in the air- and water-stable ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide[J]. Physical Chemistry Chemical Physics, 2009, 11(47): 11140-11145.

[35] SARABIA F J, CLIMENT V, FELIU J M. Underpotential deposition of Nickel on platinum single crystal electrodes[J]. Journal of Electroanalytical Chemistry, 2018, 819(V): 391-400.

[36] BARD A J, FAULKNER L R, SWAIN E et al. Fundamentals and Applications[M]. John Wiley & Sons, Inc, 2001.

[37] SCHWEINER F, MAIN J, FELDMAIER M et al. Impact of the valence band structure of Cu2O on excitonic spectra[J]. Physical Review B, 2016, 93(19): 1-16.

 [38] XIONG L, HUANG S, YANG X et al. P-Type and n-type Cu2O semiconductor thin films: Controllable preparation by simple solvothermal method and photoelectrochemical properties[J]. Electrochimica Acta, 2011, 56(6): 2735-2739.

[39] KAZIMIERCZUK T, FR?HLICH D, SCHEEL S et al. Giant Rydberg excitons in the copper oxide Cu2O[J]. Nature, 2014, 514(7522): 343-347.

[40] RAEBIGER H, LANY S, ZUNGER A. Origins of the p-type nature and cation deficiency in Cu2 O and related materials[J]. Physical Review B - Condensed Matter and Materials Physics, 2007, 76(4): 1-5.

[41] 舒云. Cu2O薄膜的電化學制備及其光電化學性能的研究[D]. 云南大學物理與天文學院虑椎,2019.

閱讀延伸

展示全部  up

国产福利姬视频在线观看,国产原创激情在线观看网站,亚洲欧美日韩激色国产精品,日韩精品亚洲国产