圓弧形電解池相比于完全敞開(kāi)的容器有許多優(yōu)點(diǎn)怔鳖。首先監(jiān)測(cè)窗口由圓弧形石英窗口組成,在準(zhǔn)直后使光垂直于石英壁入射和出射固蛾,減小了光在傳播途中的損耗结执;其次是監(jiān)測(cè)窗口溶液是相對(duì)封閉的,減小了測(cè)試過(guò)程中由于溶液暴露在空氣中帶來(lái)的影響艾凯;zui終實(shí)現(xiàn)了三電極的放置及Pb薄膜的沉積献幔。
展示全部
橢偏儀在位表征電化學(xué)沉積的系統(tǒng)搭建(十八)- Pb薄膜沉積實(shí)驗(yàn)
3.2.6.3 Pb薄膜沉積實(shí)驗(yàn)
通過(guò)前面實(shí)驗(yàn)與分析知溶液及溶液濃度對(duì)橢偏儀基底測(cè)試影響可忽略,故用該電解池進(jìn)行了Pb的沉積實(shí)驗(yàn)趾诗。采用三電極體系(工作電極:Au/Si蜡感;對(duì)電極:Pt絲;參比電極:Ag/AgCl)恃泪。溶液為1M的醋酸鈉及1M的醋酸鈉與5mM或10mM的醋酸鉛郑兴。為探究沉積條件,需對(duì)工作電極進(jìn)行CV掃描悟泵,掃描速率為5mV/s杈笔,掃描電勢(shì)窗口為-1.2V—0.5V,從開(kāi)路電壓(OCP)開(kāi)始負(fù)向掃描糕非。通過(guò)恒壓電沉積得到Pb薄膜同時(shí)進(jìn)行400nm到800nm波段的橢偏監(jiān)測(cè)蒙具。實(shí)驗(yàn)中電極的放置如圖3-10所示,Au/Si電極為工作電極置于觀察窗口朽肥;Pt絲對(duì)電極置于工作電極上方(不阻擋光路)禁筏;將置于魯金毛細(xì)管中的Ag/AgCl參比電極zui大限度接近Au/Si表面。將該在位監(jiān)測(cè)沉積電解池置于橢偏儀的監(jiān)測(cè)臺(tái)衡招,調(diào)節(jié)好準(zhǔn)直后開(kāi)始沉積和橢偏監(jiān)測(cè)篱昔。
圖3-10CV掃描及在位監(jiān)測(cè)Pb沉積實(shí)物圖
圖3-11是對(duì)Au/Si基底在醋酸鈉和醋酸鉛中進(jìn)行的CV掃描對(duì)比圖。其中Arccell曲線為1M醋酸鈉和10mM醋酸鉛中的CV掃描曲線始腾;blank control曲線為1M醋酸鈉中的CV掃描曲線州刽;H cell曲線為前期在標(biāo)準(zhǔn)H型電解池中加1M醋酸鈉和10mM醋酸鉛中的CV掃描曲線。對(duì)比Arc cell和H cell兩條曲線可以看到浪箭,所得到的CV曲線正常穗椅,裝置可用。該體系下Pb的沉積峰位和溶出峰位大致相同奶栖,電流密度與H型電解池所測(cè)得的數(shù)據(jù)相比減小匹表,且在-0.28V左右附近的吸附峰消失。電流密度減小的原因可能有兩點(diǎn)宣鄙,一是電極的有效面積比實(shí)際面積信鄱啤;二是工作電極和對(duì)電極不對(duì)稱冻晤。對(duì)比Arc cell和blank control兩條曲線可知苇羡,在只有1M醋酸鈉的電解液中電流密度相對(duì)于有醋酸鉛的可忽略不計(jì)。
圖3-11不同電解池掃描速度5mV/s的CV圖
根據(jù)CV掃描結(jié)果鼻弧,對(duì)Pb薄膜沉積的電壓進(jìn)行選取设江,為了使得沉積時(shí)間更長(zhǎng),使得更有利于橢偏儀測(cè)試温数,所以選了沉積峰位附近的電壓绣硝,及-0.57V進(jìn)行Pb薄膜沉積。
圖3-12是進(jìn)行電壓沉積過(guò)程的電流-時(shí)間圖撑刺,在不同電解液條件下鹉胖,沉積電壓都是-0.57V。其中藍(lán)色表示1M醋酸鈉溶液够傍,橙色是以1M醋酸鈉加5mM醋酸鉛溶液甫菠,紅色是1M醋酸鈉加10mM醋酸鉛溶液。從圖中可以看到?jīng)]有醋酸鉛存在時(shí)電流基本為零冕屯,而10mM醋酸鉛的沉積電流比5mM醋酸鉛的沉積電流大寂诱。理論上沉積電流越大,沉積速度也快安聘,相同時(shí)間沉薄膜的厚度越厚痰洒。所以由電流時(shí)間圖知只有醋酸鈉存在時(shí)沒(méi)有沉積瓢棒,加入5mM醋酸鉛時(shí)有沉積但是沉積量比10mM醋酸鉛要小。
圖3-12沉積電流時(shí)間圖
圖3-13是沉積結(jié)果實(shí)物圖丘喻,a圖是在1M醋酸鈉為電解液沉積后得到的圖脯宿,可以看到?jīng)]有沉積物;b圖是在1M醋酸鈉加5mM醋酸鉛為電解液溶液的沉積樣品泉粉,有灰黑色的明顯沉積物连霉,沉積不均勻;c圖是在1M醋酸鈉加10mM醋酸鉛為電解液溶液沉積結(jié)果嗡靡,有灰黑色的明顯沉積物跺撼,沉積不均勻。對(duì)比b和c可知讨彼,可以明顯看到電解液為10mM醋酸鉛沉積物顏色加深歉井,說(shuō)明其比5mM沉積量更多,這和i-t圖所顯示的結(jié)果相對(duì)應(yīng)点骑。
圖3-13不同電解液沉積結(jié)果圖酣难,(a)1M醋酸鈉電解液;(b)1M醋酸鈉加5mM醋酸鉛黑滴;(c)1M醋酸鈉加10mM醋酸鉛
在不同的沉積條件下同時(shí)進(jìn)行了橢偏儀的監(jiān)測(cè)憨募。圖3-14為不同條件下的橢偏結(jié)構(gòu)模型,其中Au/Si基底上測(cè)得的數(shù)據(jù)袁辈,其物理模型如圖3-14(a)所示菜谣;在池體中加入去離子水后的數(shù)據(jù),其物理模型如圖3-14(b)所示晚缩;1M醋酸鈉溶液和5/10mM醋酸鉛溶液的數(shù)據(jù)尾膊,其物理模型如圖3-14(c)所示;1M醋酸鈉溶液的數(shù)據(jù)荞彼,其物理模型如圖3-14(d)所示冈敛。
圖3-14不同條件下的物理模型圖:(a)Au/Si基底;(b)池體中加入去離子水鸣皂;(c)池體中加入1M醋酸鈉和10mM醋酸鉛抓谴;(d)池體中加入1M醋酸鈉
圖3-15是不同條件下進(jìn)行橢偏儀測(cè)量得到的橢偏參數(shù)Psi和Delta各自對(duì)比圖。從圖中可知寞缝,Psi和Delta的值大致的變化趨勢(shì)一致癌压,但是在位監(jiān)測(cè)下有鉛薄膜沉積的兩組數(shù)據(jù)全程擾動(dòng)較大,曲線上有許多的小峰荆陆,這是由于鉛薄膜的沉積帶來(lái)影響滩届。
圖3-15不同條件下(a)Psi和(b)Delta對(duì)比
實(shí)驗(yàn)說(shuō)明該池體在位沉積鉛薄膜橢偏儀測(cè)試得到的數(shù)據(jù)極具不穩(wěn)定性,波動(dòng)較大被啼,且溶液濃度對(duì)橢偏數(shù)據(jù)的影響不明顯帜消,這和之前不同濃度測(cè)試的測(cè)試結(jié)果一致棠枉。
了解更多橢偏儀詳情,請(qǐng)?jiān)L問(wèn)上海昊量光電的官方網(wǎng)頁(yè):
http://www.wjjzl.com/three-level-56.html
更多詳情請(qǐng)聯(lián)系昊量光電/歡迎直接聯(lián)系昊量光電
關(guān)于昊量光電:
上海昊量光電設(shè)備有限公司是光電產(chǎn)品專業(yè)代理商券犁,產(chǎn)品包括各類激光器术健、光電調(diào)制器汹碱、光學(xué)測(cè)量設(shè)備粘衬、光學(xué)元件等,涉及應(yīng)用涵蓋了材料加工咳促、光通訊稚新、生物醫(yī)療、科學(xué)研究跪腹、國(guó)防褂删、量子光學(xué)、生物顯微冲茸、物聯(lián)傳感屯阀、激光制造等;可為客戶提供完整的設(shè)備安裝轴术,培訓(xùn)难衰,硬件開(kāi)發(fā),軟件開(kāi)發(fā)逗栽,系統(tǒng)集成等服務(wù)盖袭。
您可以通過(guò)我們昊量光電的官方網(wǎng)站www.wjjzl.com了解更多的產(chǎn)品信息,或直接來(lái)電咨詢4006-888-532彼宠。
相關(guān)文獻(xiàn):
[1] WONG H S P, FRANK D J, SOLOMON P M et al. Nanoscale cmos[J]. Proceedings of the IEEE, 1999, 87(4): 537-570.
[2] LOSURDO M, HINGERL K. ellipsometry at the nanoscale[M]. Springer Heidelberg New York Dordrecht London. 2013.
[3] DYRE J C. Universal low-temperature ac conductivity of macroscopically disordered nonmetals[J]. Physical Review B, 1993, 48(17): 12511-12526. DOI:10.1103/PhysRevB.48.12511.
[4] CHEN S, KüHNE P, STANISHEV V et al. On the anomalous optical conductivity dISPersion of electrically conducting polymers: Ultra-wide spectral range ellipsometry combined with a Drude-Lorentz model[J]. Journal of Materials Chemistry C, 2019, 7(15): 4350-4362.
[5] 陳籃鳄虱,周巖. 膜厚度測(cè)量的橢偏儀法原理分析[J]. 大學(xué)物理實(shí)驗(yàn), 1999, 12(3): 10-13.
[6] ZAPIEN J A, COLLINS R W, MESSIER R. Multichannel ellipsometer for real time spectroscopy of thin film deposition from 1.5 to 6.5 eV[J]. Review of Scientific Instruments, 2000, 71(9): 3451-3460.
[7] DULTSEV F N, KOLOSOVSKY E A. Application of ellipsometry to control the plasmachemical synthesis of thin TiONx layers[J]. Advances in Condensed Matter Physics, 2015, 2015: 1-8.
[8] DULTSEV F N, KOLOSOVSKY E A. Application of ellipsometry to control the plasmachemical synthesis of thin TiONx layers[J]. Advances in Condensed Matter Physics, 2015, 2015: 1-8.
[9] YUAN M, YUAN L, HU Z et al. In Situ Spectroscopic Ellipsometry for Thermochromic CsPbI3 Phase Evolution Portfolio[J]. Journal of Physical Chemistry C, 2020, 124(14): 8008-8014.
[10] 焦楊景.橢偏儀在位表征電化學(xué)沉積的系統(tǒng)搭建.云南大學(xué)說(shuō)是論文,2022.
[11] CANEPA M, MAIDECCHI G, TOCCAFONDI C et al. Spectroscopic ellipsometry of self assembLED monolayers: Interface effects. the case of phenyl selenide SAMs on gold[J]. Physical Chemistry Chemical Physics, 2013, 15(27): 11559-11565. DOI:10.1039/c3cp51304a.
[12] FUJIWARA H, KONDO M, MATSUDA A. Interface-layer formation in microcrystalline Si:H growth on ZnO substrates studied by real-time spectroscopic ellipsometry and infrared spectroscopy[J]. Journal of Applied Physics, 2003, 93(5): 2400-2409.
[13] FUJIWARA H, TOYOSHIMA Y, KONDO M et al. Interface-layer formation mechanism in (formula presented) thin-film growth studied by real-time spectroscopic ellipsometry and infrared spectroscopy[J]. Physical Review B - Condensed Matter and Materials Physics, 1999, 60(19): 13598-13604.
[14] LEE W K, KO J S. Kinetic model for the simulation of hen egg white lysozyme adsorption at solid/water interface[J]. Korean Journal of Chemical Engineering, 2003, 20(3): 549-553.
[15] STAMATAKI K, PAPADAKIS V, EVEREST M A et al. Monitoring adsorption and sedimentation using evanescent-wave cavity ringdown ellipsometry[J]. Applied Optics, 2013, 52(5): 1086-1093.
[16] VIEGAS D, FERNANDES E, QUEIRóS R et al. Adapting Bobbert-Vlieger model to spectroscopic ellipsometry of gold nanoparticles with bio-organic shells[J]. Biomedical Optics Express, 2017, 8(8): 3538.
[17] ARWIN H. Application of ellipsometry techniques to biological materials[J]. Thin Solid Films, 2011, 519(9): 2589-2592.
[18] ZIMMER A, VEYS-RENAUX D, BROCH L et al. In situ spectroelectrochemical ellipsometry using super continuum white laser: Study of the anodization of magnesium alloy [J]. Journal of Vacuum Science & Technology B, 2019, 37(6): 062911.
[19] ZANGOOIE S, BJORKLUND R, ARWIN H. Water Interaction with Thermally Oxidized Porous Silicon Layers[J]. Journal of The Electrochemical Society, 1997, 144(11): 4027-4035.
[20] KYUNG Y B, LEE S, OH H et al. Determination of the optical functions of various liquids by rotating compensator multichannel spectroscopic ellipsometry[J]. Bulletin of the Korean Chemical Society, 2005, 26(6): 947-951.
[21] OGIEGLO W, VAN DER WERF H, TEMPELMAN K et al. Erratum to ― n-Hexane induced swelling of thin PDMS films under non-equilibrium nanofiltration permeation conditions, resolved by spectroscopic ellipsometry‖ [J. Membr. Sci. 431 (2013), 233-243][J]. Journal of Membrane Science, 2013, 437: 312..
[22] BROCH L, JOHANN L, STEIN N et al. Real time in situ ellipsometric and gravimetric monitoring for electrochemistry experiments[J]. Review of Scientific Instruments, 2007, 78(6).
[23] BISIO F, PRATO M, BARBORINI E et al. Interaction of alkanethiols with nanoporous cluster-assembled Au films[J]. Langmuir, 2011, 27(13): 8371-8376.
[24] 李廣立. 氧化亞銅薄膜的制備及其光電性能研究[D]. 西南交通大學(xué), 2016.
[25] 董金礦. 氧化亞銅薄膜的制備及其光催化性能的研究[D]. 安徽建筑大學(xué), 2014.
[26] 張楨. 氧化亞銅薄膜的電化學(xué)制備及其光催化和光電性能的研究[D]. 上海交通大學(xué)材料科 學(xué)與工程學(xué)院, 2013.
[27] DISSERTATION M. Cellulose Derivative and Lanthanide Complex Thin Film Cellulose Derivative and Lanthanide Complex Thin Film[J]. 2017.
[28] NIE J, YU X, HU D et al. Preparation and Properties of Cu2O/TiO2 heterojunction Nanocomposite for Rhodamine B Degradation under visible light[J]. ChemistrySelect, 2020, 5(27): 8118-8128.
[29] STRASSER P, GLIECH M, KUEHL S et al. Electrochemical processes on solid shaped nanoparticles with defined facets[J]. Chemical Society Reviews, 2018, 47(3): 715-735.
[30] XU Z, CHEN Y, ZHANG Z et al. Progress of research on underpotential deposition——I. Theory of underpotential deposition[J]. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2015, 31(7): 1219-1230.
[31] PANGAROV n. Thermodynamics of electrochemical phase formation and underpotential metal deposition[J]. Electrochimica Acta, 1983, 28(6): 763-775.
[32] KAYASTH S. ELECTRODEPOSITION STUDIES OF RARE EARTHS[J]. Methods in Geochemistry and Geophysics, 1972, 6(C): 5-13.
[33] KONDO T, TAKAKUSAGI S, UOSAKI K. Stability of underpotentially deposited Ag layers on a Au(1 1 1) surface studied by surface X-ray scattering[J]. Electrochemistry Communications, 2009, 11(4): 804-807.
[34] GASPAROTTO L H S, BORISENKO N, BOCCHI N et al. In situ STM investigation of the lithium underpotential deposition on Au(111) in the air- and water-stable ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide[J]. Physical Chemistry Chemical Physics, 2009, 11(47): 11140-11145.
[35] SARABIA F J, CLIMENT V, FELIU J M. Underpotential deposition of Nickel on platinum single crystal electrodes[J]. Journal of Electroanalytical Chemistry, 2018, 819(V): 391-400.
[36] BARD A J, FAULKNER L R, SWAIN E et al. Fundamentals and Applications[M]. John Wiley & Sons, Inc, 2001.
[37] SCHWEINER F, MAIN J, FELDMAIER M et al. Impact of the valence band structure of Cu2O on excitonic spectra[J]. Physical Review B, 2016, 93(19): 1-16.
[38] XIONG L, HUANG S, YANG X et al. P-Type and n-type Cu2O semiconductor thin films: Controllable preparation by simple solvothermal method and photoelectrochemical properties[J]. Electrochimica Acta, 2011, 56(6): 2735-2739.
[39] KAZIMIERCZUK T, FR?HLICH D, SCHEEL S et al. Giant Rydberg excitons in the copper oxide Cu2O[J]. Nature, 2014, 514(7522): 343-347.
[40] RAEBIGER H, LANY S, ZUNGER A. Origins of the p-type nature and cation deficiency in Cu2 O and related materials[J]. Physical Review B - Condensed Matter and Materials Physics, 2007, 76(4): 1-5.
[41] 舒云. Cu2O薄膜的電化學(xué)制備及其光電化學(xué)性能的研究[D]. 云南大學(xué)物理與天文學(xué)院,2019.
展示全部