本文主要介紹了擬合的光學(xué)模型以及用于擬合的Film Wizard軟件與被廣泛應(yīng)用到許多領(lǐng)域的科學(xué)研究和工程計(jì)算中的COMSOL Multiphysics帅刊。
展示全部
橢偏儀在位表征電化學(xué)沉積的系統(tǒng)搭建(十二)- 光學(xué)常數(shù)的提取與COMSOL Multiphysics
2.3光學(xué)常數(shù)的提取
2.3.1建立光學(xué)模型
通過橢偏測試得到包含整個池體的參數(shù)ψ和Δ纸泡,這時要想提取CU2O的光學(xué)常數(shù)及生長速率就需要進(jìn)行建模擬合。首先把整個池體看成多層膜結(jié)構(gòu)赖瞒,光從空氣中依次經(jīng)過ITO女揭、溶液、CU2O以及Au襯底栏饮,zui后反射回到橢偏儀的出射臂吧兔,zui終信息被接收。在物理層面將池體簡化為四層膜的模型袍嬉,即ITO/溶液/CU2O/(Au/Si)境蔼,如圖2-3(a)所示。根據(jù)擬合需要可以對結(jié)構(gòu)模型進(jìn)行調(diào)整冬竟,如:ITO和溶液混合層/CU2O/(Au/Si)的三層膜模型欧穴,如圖2-3(b)所示。
圖2-3光學(xué)模型示意圖(a)四層泵殴;(b)三層
數(shù)據(jù)分析中用的是全局誤差zui小化(GEM)數(shù)據(jù)分析法涮帘,數(shù)據(jù)分析程序如圖2-4所示。其中光學(xué)模型選用上述的層狀模型笑诅,擬合模型用Lorentz Oscillator+Drude模型和有效介質(zhì)模型(EMA)调缨。
圖2-4數(shù)據(jù)擬合分析程序
2.3.2 Film Wizard
Film Wizard擬合軟件是橢偏儀專用數(shù)據(jù)處理軟件疮鲫,可以實(shí)現(xiàn)橢偏譜的擬合與數(shù)據(jù)的提取。在建立好擬合模型后就可以使用該軟件進(jìn)行擬合弦叶,擬合步驟如下:
1.數(shù)據(jù)轉(zhuǎn)換俊犯,即把橢偏儀測試得到的數(shù)據(jù)格式(.dat)轉(zhuǎn)換為FilmWizard軟件可以識別的文件格式(.tar);
2.打開Film Wizard軟件新建一個項(xiàng)目伤哺,然后把建立好的多層模型寫到新建的項(xiàng)目里燕侠;
3.導(dǎo)入數(shù)據(jù),即把已知的基底和其他層的數(shù)據(jù)導(dǎo)入模型立莉,再把要擬合層的數(shù)據(jù)導(dǎo)入模型绢彤;
4.選擇擬合模型,Lorentz Oscillator+Drude模型或有效介質(zhì)模型(EMA)蜓耻;
5.擬合茫舶,選擇需要改變的擬合參數(shù),如厚度刹淌、振子數(shù)等饶氏,然后通過調(diào)節(jié)要擬合的參數(shù)進(jìn)行擬合直至擬合誤差達(dá)到要求。
6.當(dāng)誤差達(dá)到zui小后有勾,導(dǎo)出擬合得到的數(shù)據(jù)n疹启、k、等柠衅。
2.4 COMSOL Multiphysics
COMSOL Multiphysics被廣泛應(yīng)用到許多領(lǐng)域的科學(xué)研究和工程計(jì)算中皮仁,COMSOL Multiphysics在多物理場的全耦合方面十分專業(yè),可以高效的進(jìn)行科學(xué)及工程領(lǐng)域的各種物理場景模擬菲宴,并在良好的計(jì)算性能與出眾的雙向多場直接耦合模擬分析能力加持下實(shí)現(xiàn)高精度數(shù)值仿真贷祈。
我們應(yīng)用了COMSOL軟件對電化學(xué)沉積中的電極形狀建模及電流密度分布的模擬。電化學(xué)模塊下主要一次和二次電流分布喝峦、三次電流分布势誊、電池接口、腐蝕變形幾何谣蠢、電鍍變形幾何接口粟耻。這里主要用到了電化學(xué)模塊中的一次和二次電流分布接口中的一次電流分布,進(jìn)行了一般穩(wěn)態(tài)研究眉踱,其涉及到的方程有:
其中為電解質(zhì)的電位挤忙,
為電勢。在模擬過程中通過給定參數(shù)的初始值谈喳,即可進(jìn)相應(yīng)的擬合册烈,得到電解液電場分布及電流密度分布等。
了解更多橢偏儀詳情婿禽,請?jiān)L問上海昊量光電的官方網(wǎng)頁:
http://www.wjjzl.com/three-level-56.html
更多詳情請聯(lián)系昊量光電/歡迎直接聯(lián)系昊量光電
關(guān)于昊量光電:
上海昊量光電設(shè)備有限公司是光電產(chǎn)品專業(yè)代理商赏僧,產(chǎn)品包括各類激光器大猛、光電調(diào)制器、光學(xué)測量設(shè)備淀零、光學(xué)元件等挽绩,涉及應(yīng)用涵蓋了材料加工、光通訊驾中、生物醫(yī)療唉堪、科學(xué)研究、國防哀卫、量子光學(xué)巨坊、生物顯微撬槽、物聯(lián)傳感此改、激光制造等;可為客戶提供完整的設(shè)備安裝侄柔,培訓(xùn)共啃,硬件開發(fā),軟件開發(fā)暂题,系統(tǒng)集成等服務(wù)移剪。
您可以通過我們昊量光電的官方網(wǎng)站www.wjjzl.com了解更多的產(chǎn)品信息,或直接來電咨詢4006-888-532薪者。
相關(guān)文獻(xiàn):
[1] WONG H S P, FRANK D J, SOLOMON P M et al. Nanoscale cmos[J]. Proceedings of the IEEE, 1999, 87(4): 537-570.
[2] LOSURDO M, HINGERL K. ellipsometry at the nanoscale[M]. Springer Heidelberg New York Dordrecht London. 2013.
[3] DYRE J C. Universal low-temperature ac conductivity of macroscopically disordered nonmetals[J]. Physical Review B, 1993, 48(17): 12511-12526. DOI:10.1103/PhysRevB.48.12511.
[4] CHEN S, KüHNE P, STANISHEV V et al. On the anomalous optical conductivity dISPersion of electrically conducting polymers: Ultra-wide spectral range ellipsometry combined with a Drude-Lorentz model[J]. Journal of Materials Chemistry C, 2019, 7(15): 4350-4362.
[5] 陳籃纵苛,周巖. 膜厚度測量的橢偏儀法原理分析[J]. 大學(xué)物理實(shí)驗(yàn), 1999, 12(3): 10-13.
[6] ZAPIEN J A, COLLINS R W, MESSIER R. Multichannel ellipsometer for real time spectroscopy of thin film deposition from 1.5 to 6.5 eV[J]. Review of Scientific Instruments, 2000, 71(9): 3451-3460.
[7] DULTSEV F N, KOLOSOVSKY E A. Application of ellipsometry to control the plasmachemical synthesis of thin TiONx layers[J]. Advances in Condensed Matter Physics, 2015, 2015: 1-8.
[8] DULTSEV F N, KOLOSOVSKY E A. Application of ellipsometry to control the plasmachemical synthesis of thin TiONx layers[J]. Advances in Condensed Matter Physics, 2015, 2015: 1-8.
[9] YUAN M, YUAN L, HU Z et al. In Situ Spectroscopic Ellipsometry for Thermochromic CsPbI3 Phase Evolution Portfolio[J]. Journal of Physical Chemistry C, 2020, 124(14): 8008-8014.
[10] 焦楊景.橢偏儀在位表征電化學(xué)沉積的系統(tǒng)搭建.云南大學(xué)說是論文,2022.
[11] CANEPA M, MAIDECCHI G, TOCCAFONDI C et al. Spectroscopic ellipsometry of self assembLED monolayers: Interface effects. the case of phenyl selenide SAMs on gold[J]. Physical Chemistry Chemical Physics, 2013, 15(27): 11559-11565. DOI:10.1039/c3cp51304a.
[12] FUJIWARA H, KONDO M, MATSUDA A. Interface-layer formation in microcrystalline Si:H growth on ZnO substrates studied by real-time spectroscopic ellipsometry and infrared spectroscopy[J]. Journal of Applied Physics, 2003, 93(5): 2400-2409.
[13] FUJIWARA H, TOYOSHIMA Y, KONDO M et al. Interface-layer formation mechanism in (formula presented) thin-film growth studied by real-time spectroscopic ellipsometry and infrared spectroscopy[J]. Physical Review B - Condensed Matter and Materials Physics, 1999, 60(19): 13598-13604.
[14] LEE W K, KO J S. Kinetic model for the simulation of hen egg white lysozyme adsorption at solid/water interface[J]. Korean Journal of Chemical Engineering, 2003, 20(3): 549-553.
[15] STAMATAKI K, PAPADAKIS V, EVEREST M A et al. Monitoring adsorption and sedimentation using evanescent-wave cavity ringdown ellipsometry[J]. Applied Optics, 2013, 52(5): 1086-1093.
[16] VIEGAS D, FERNANDES E, QUEIRóS R et al. Adapting Bobbert-Vlieger model to spectroscopic ellipsometry of gold nanoparticles with bio-organic shells[J]. Biomedical Optics Express, 2017, 8(8): 3538.
[17] ARWIN H. Application of ellipsometry techniques to biological materials[J]. Thin Solid Films, 2011, 519(9): 2589-2592.
[18] ZIMMER A, VEYS-RENAUX D, BROCH L et al. In situ spectroelectrochemical ellipsometry using super continuum white laser: Study of the anodization of magnesium alloy [J]. Journal of Vacuum Science & Technology B, 2019, 37(6): 062911.
[19] ZANGOOIE S, BJORKLUND R, ARWIN H. Water Interaction with Thermally Oxidized Porous Silicon Layers[J]. Journal of The Electrochemical Society, 1997, 144(11): 4027-4035.
[20] KYUNG Y B, LEE S, OH H et al. Determination of the optical functions of various liquids by rotating compensator multichannel spectroscopic ellipsometry[J]. Bulletin of the Korean Chemical Society, 2005, 26(6): 947-951.
[21] OGIEGLO W, VAN DER WERF H, TEMPELMAN K et al. Erratum to ― n-Hexane induced swelling of thin PDMS films under non-equilibrium nanofiltration permeation conditions, resolved by spectroscopic ellipsometry‖ [J. Membr. Sci. 431 (2013), 233-243][J]. Journal of Membrane Science, 2013, 437: 312..
[22] BROCH L, JOHANN L, STEIN N et al. Real time in situ ellipsometric and gravimetric monitoring for electrochemistry experiments[J]. Review of Scientific Instruments, 2007, 78(6).
[23] BISIO F, PRATO M, BARBORINI E et al. Interaction of alkanethiols with nanoporous cluster-assembled Au films[J]. Langmuir, 2011, 27(13): 8371-8376.
[24] 李廣立. 氧化亞銅薄膜的制備及其光電性能研究[D]. 西南交通大學(xué), 2016.
[25] 董金礦. 氧化亞銅薄膜的制備及其光催化性能的研究[D]. 安徽建筑大學(xué), 2014.
[26] 張楨. 氧化亞銅薄膜的電化學(xué)制備及其光催化和光電性能的研究[D]. 上海交通大學(xué)材料科 學(xué)與工程學(xué)院, 2013.
[27] DISSERTATION M. Cellulose Derivative and Lanthanide Complex Thin Film Cellulose Derivative and Lanthanide Complex Thin Film[J]. 2017.
[28] NIE J, YU X, HU D et al. Preparation and Properties of Cu2O/TiO2 heterojunction Nanocomposite for Rhodamine B Degradation under visible light[J]. ChemistrySelect, 2020, 5(27): 8118-8128.
[29] STRASSER P, GLIECH M, KUEHL S et al. Electrochemical processes on solid shaped nanoparticles with defined facets[J]. Chemical Society Reviews, 2018, 47(3): 715-735.
[30] XU Z, CHEN Y, ZHANG Z et al. Progress of research on underpotential deposition——I. Theory of underpotential deposition[J]. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2015, 31(7): 1219-1230.
[31] PANGAROV n. Thermodynamics of electrochemical phase formation and underpotential metal deposition[J]. Electrochimica Acta, 1983, 28(6): 763-775.
[32] KAYASTH S. ELECTRODEPOSITION STUDIES OF RARE EARTHS[J]. Methods in Geochemistry and Geophysics, 1972, 6(C): 5-13.
[33] KONDO T, TAKAKUSAGI S, UOSAKI K. Stability of underpotentially deposited Ag layers on a Au(1 1 1) surface studied by surface X-ray scattering[J]. Electrochemistry Communications, 2009, 11(4): 804-807.
[34] GASPAROTTO L H S, BORISENKO N, BOCCHI N et al. In situ STM investigation of the lithium underpotential deposition on Au(111) in the air- and water-stable ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide[J]. Physical Chemistry Chemical Physics, 2009, 11(47): 11140-11145.
[35] SARABIA F J, CLIMENT V, FELIU J M. Underpotential deposition of Nickel on platinum single crystal electrodes[J]. Journal of Electroanalytical Chemistry, 2018, 819(V): 391-400.
[36] BARD A J, FAULKNER L R, SWAIN E et al. Fundamentals and Applications[M]. John Wiley & Sons, Inc, 2001.
[37] SCHWEINER F, MAIN J, FELDMAIER M et al. Impact of the valence band structure of Cu2O on excitonic spectra[J]. Physical Review B, 2016, 93(19): 1-16.
[38] XIONG L, HUANG S, YANG X et al. P-Type and n-type Cu2O semiconductor thin films: Controllable preparation by simple solvothermal method and photoelectrochemical properties[J]. Electrochimica Acta, 2011, 56(6): 2735-2739.
[39] KAZIMIERCZUK T, FR?HLICH D, SCHEEL S et al. Giant Rydberg excitons in the copper oxide Cu2O[J]. Nature, 2014, 514(7522): 343-347.
[40] RAEBIGER H, LANY S, ZUNGER A. Origins of the p-type nature and cation deficiency in Cu2 O and related materials[J]. Physical Review B - Condensed Matter and Materials Physics, 2007, 76(4): 1-5.
[41] 舒云. Cu2O薄膜的電化學(xué)制備及其光電化學(xué)性能的研究[D]. 云南大學(xué)物理與天文學(xué)院,2019.
展示全部