首頁(yè)  技術(shù)文章  橢偏儀在位表征電化學(xué)沉積的系統(tǒng)搭建(十)- 研究?jī)?nèi)容和意義

橢偏儀在位表征電化學(xué)沉積的系統(tǒng)搭建(十)- 研究?jī)?nèi)容和意義

發(fā)布時(shí)間:2024-01-30 10:15:51 瀏覽量:1648 作者:Alex

摘要

以現(xiàn)有橢偏儀為基礎(chǔ),進(jìn)行橢偏儀在位監(jiān)測(cè)電化學(xué)沉積的構(gòu)建野舶。電化學(xué)沉積過(guò)程涉及到界面層易迹、薄膜生長(zhǎng)和到固液界面的問題,從另外一個(gè)角度對(duì)電化學(xué)沉積的解構(gòu)平道,也為下一步進(jìn)行固液界面的研究提供一種方法睹欲。

正文


橢偏儀在位表征電化學(xué)沉積的系統(tǒng)搭建(十)- 研究?jī)?nèi)容和意義


5.研究?jī)?nèi)容和意義

如下圖1-19為用于分析梯度層的光學(xué)模型。當(dāng)梯度層的光響應(yīng)用多層結(jié)構(gòu)表示時(shí)如圖1-19(a)所示一屋,其厚度dj和介電函數(shù)都是必需的窘疮。然而,由于存在大量的分析參數(shù)冀墨,使用這種光學(xué)模型進(jìn)行橢偏譜分析通常比較困難闸衫。此外,該分析中的擬合誤差隨著分析誤差的傳播逐漸向頂層增加诽嘉。但是在VSA中蔚出,復(fù)雜的底層結(jié)構(gòu)用偽介電函數(shù)表示,只有厚度(d)和介電函數(shù)如圖1-19(b)虫腋。因此骄酗,即使樣品的介電函數(shù)在生長(zhǎng)方向上不斷變化,VSA的分析也可以相對(duì)容易地進(jìn)行悦冀。


圖1-19用于分析梯度層的光學(xué)模型:(a)多層模型和(b)虛擬襯底近似(VSA)


圖1-20為VSA的光學(xué)模型趋翻。在這個(gè)圖中,表示計(jì)算出的偽介電函數(shù),n表示在一定間隔內(nèi)測(cè)量到的實(shí)時(shí)光譜數(shù)盒蟆。VSA的關(guān)鍵特征是利用偽介電函數(shù)隨厚度的變化進(jìn)行分析踏烙,即在分析時(shí)师骗,如圖1-20所示被用作虛擬基板,從的變化中讨惩,對(duì)之間形成的薄覆蓋層進(jìn)行了表征辟癌。


圖1-20VSA的光學(xué)模型


表1-1中的方法各有各的優(yōu)缺點(diǎn),需要根據(jù)情況選擇恰當(dāng)?shù)姆治龇椒ú脚А@绠?dāng)一層的介電函數(shù)未知時(shí)愿待,我們使用GEM來(lái)得到該層的介電函數(shù)。由GEM確定的幾個(gè)介電函數(shù)可以構(gòu)造一個(gè)光學(xué)數(shù)據(jù)庫(kù)靴患∪越模基于這樣的光學(xué)數(shù)據(jù)庫(kù),我們可以利用LRA或VSA對(duì)薄膜結(jié)構(gòu)進(jìn)行實(shí)時(shí)控制鸳君。


本文根據(jù)實(shí)驗(yàn)前期研究农渊,以現(xiàn)有橢偏儀為基礎(chǔ),進(jìn)行橢偏儀在位監(jiān)測(cè)電化學(xué)沉積的構(gòu)建或颊。電化學(xué)沉積過(guò)程涉及到界面層砸紊、薄膜生長(zhǎng)和到固液界面的問題,從另外一個(gè)角度對(duì)電化學(xué)沉積的解構(gòu)囱挑,也為下一步進(jìn)行固液界面的研究提供一種方法醉顽。

因此本文主要的研究?jī)?nèi)容包括:


1、在位監(jiān)控裝置的設(shè)計(jì)平挑。主要展開電解池的設(shè)計(jì)游添,包括用COMSOL進(jìn)行電場(chǎng)分布的擬合,從而設(shè)計(jì)電極的位置等通熄。并根據(jù)實(shí)驗(yàn)和光路的調(diào)節(jié)的優(yōu)化制備了兩種類型的電解池唆涝。


2、不同溶液濃度對(duì)實(shí)驗(yàn)的影響唇辨。用Pb溶液為案例廊酣,進(jìn)行了不同濃度的Pb溶液的橢偏譜。并以ITO為透明工作電極赏枚,對(duì)電化學(xué)沉積過(guò)程進(jìn)行了研究亡驰。


3、橢偏儀在位監(jiān)測(cè)Cu2O薄膜的生長(zhǎng)過(guò)程嗡贺。研究包括全譜(300-800nm)橢偏儀Cu2O薄膜沉積的準(zhǔn)在位監(jiān)測(cè)以及單波長(zhǎng)(380nm)橢偏儀對(duì)Cu2O薄膜沉積的在位監(jiān)測(cè)隐解。通過(guò)控制電流薄膜沉積(-0.4mA),然后在每沉積180s后停止生長(zhǎng)诫睬,進(jìn)行橢偏譜的測(cè)試,接著對(duì)橢偏譜再利用VSA分析法解構(gòu)出其光學(xué)常數(shù)和厚度帕涌。從而得到生長(zhǎng)厚度隨著時(shí)間的變化函數(shù)摄凡,再利用單波長(zhǎng)的橢偏參數(shù)進(jìn)行解構(gòu)续徽。

 

了解更多橢偏儀詳情,請(qǐng)?jiān)L問上海昊量光電的官方網(wǎng)頁(yè):

http://www.wjjzl.com/three-level-56.html


更多詳情請(qǐng)聯(lián)系昊量光電/歡迎直接聯(lián)系昊量光電

關(guān)于昊量光電:

上海昊量光電設(shè)備有限公司是光電產(chǎn)品專業(yè)代理商亲澡,產(chǎn)品包括各類激光器钦扭、光電調(diào)制器、光學(xué)測(cè)量設(shè)備床绪、光學(xué)元件等客情,涉及應(yīng)用涵蓋了材料加工、光通訊癞己、生物醫(yī)療膀斋、科學(xué)研究、國(guó)防痹雅、量子光學(xué)仰担、生物顯微、物聯(lián)傳感绩社、激光制造等摔蓝;可為客戶提供完整的設(shè)備安裝,培訓(xùn)愉耙,硬件開發(fā)贮尉,軟件開發(fā),系統(tǒng)集成等服務(wù)朴沿。

您可以通過(guò)我們昊量光電的官方網(wǎng)站www.wjjzl.com了解更多的產(chǎn)品信息猜谚,或直接來(lái)電咨詢4006-888-532。

 

相關(guān)文獻(xiàn):

[1] WONG H S P, FRANK D J, SOLOMON P M et al. Nanoscale cmos[J]. Proceedings of the IEEE, 1999, 87(4): 537-570.

[2] LOSURDO M, HINGERL K. ellipsometry at the nanoscale[M]. Springer Heidelberg New York Dordrecht London. 2013.

[3] DYRE J C. Universal low-temperature ac conductivity of macroscopically disordered nonmetals[J]. Physical Review B, 1993, 48(17): 12511-12526. DOI:10.1103/PhysRevB.48.12511.

[4] CHEN S, KüHNE P, STANISHEV V et al. On the anomalous optical conductivity dISPersion of electrically conducting polymers: Ultra-wide spectral range ellipsometry combined with a Drude-Lorentz model[J]. Journal of Materials Chemistry C, 2019, 7(15): 4350-4362.

[5] 陳籃悯仙,周巖. 膜厚度測(cè)量的橢偏儀法原理分析[J]. 大學(xué)物理實(shí)驗(yàn), 1999, 12(3): 10-13.

[6] ZAPIEN J A, COLLINS R W, MESSIER R. Multichannel ellipsometer for real time spectroscopy of thin film deposition from 1.5 to 6.5 eV[J]. Review of Scientific Instruments, 2000, 71(9): 3451-3460.

[7] DULTSEV F N, KOLOSOVSKY E A. Application of ellipsometry to control the plasmachemical synthesis of thin TiONx layers[J]. Advances in Condensed Matter Physics, 2015, 2015: 1-8.

[8] DULTSEV F N, KOLOSOVSKY E A. Application of ellipsometry to control the plasmachemical synthesis of thin TiONx layers[J]. Advances in Condensed Matter Physics, 2015, 2015: 1-8.

[9] YUAN M, YUAN L, HU Z et al. In Situ Spectroscopic Ellipsometry for Thermochromic CsPbI3 Phase Evolution Portfolio[J]. Journal of Physical Chemistry C, 2020, 124(14): 8008-8014.

[10] 焦楊.橢偏儀在位表征電化學(xué)沉積的系統(tǒng)搭建.云南大學(xué)說(shuō)是論文,2022.

[11] CANEPA M, MAIDECCHI G, TOCCAFONDI C et al. Spectroscopic ellipsometry of self assembLED monolayers: Interface effects. the case of phenyl selenide SAMs on gold[J]. Physical Chemistry Chemical Physics, 2013, 15(27): 11559-11565. DOI:10.1039/c3cp51304a.

[12] FUJIWARA H, KONDO M, MATSUDA A. Interface-layer formation in microcrystalline Si:H growth on ZnO substrates studied by real-time spectroscopic ellipsometry and infrared spectroscopy[J]. Journal of Applied Physics, 2003, 93(5): 2400-2409.

[13] FUJIWARA H, TOYOSHIMA Y, KONDO M et al. Interface-layer formation mechanism in (formula presented) thin-film growth studied by real-time spectroscopic ellipsometry and infrared spectroscopy[J]. Physical Review B - Condensed Matter and Materials Physics, 1999, 60(19): 13598-13604.

[14] LEE W K, KO J S. Kinetic model for the simulation of hen egg white lysozyme adsorption at solid/water interface[J]. Korean Journal of Chemical Engineering, 2003, 20(3): 549-553.

[15] STAMATAKI K, PAPADAKIS V, EVEREST M A et al. Monitoring adsorption and sedimentation using evanescent-wave cavity ringdown ellipsometry[J]. Applied Optics, 2013, 52(5): 1086-1093.

[16] VIEGAS D, FERNANDES E, QUEIRóS R et al. Adapting Bobbert-Vlieger model to spectroscopic ellipsometry of gold nanoparticles with bio-organic shells[J]. Biomedical Optics Express, 2017, 8(8): 3538.

[17] ARWIN H. Application of ellipsometry techniques to biological materials[J]. Thin Solid Films, 2011, 519(9): 2589-2592.

[18] ZIMMER A, VEYS-RENAUX D, BROCH L et al. In situ spectroelectrochemical ellipsometry using super continuum white laser: Study of the anodization of magnesium alloy [J]. Journal of Vacuum Science & Technology B, 2019, 37(6): 062911.

[19] ZANGOOIE S, BJORKLUND R, ARWIN H. Water Interaction with Thermally Oxidized Porous Silicon Layers[J]. Journal of The Electrochemical Society, 1997, 144(11): 4027-4035.

[20] KYUNG Y B, LEE S, OH H et al. Determination of the optical functions of various liquids by rotating compensator multichannel spectroscopic ellipsometry[J]. Bulletin of the Korean Chemical Society, 2005, 26(6): 947-951.

[21] OGIEGLO W, VAN DER WERF H, TEMPELMAN K et al. Erratum to ― n-Hexane induced swelling of thin PDMS films under non-equilibrium nanofiltration permeation conditions, resolved by spectroscopic ellipsometry‖ [J. Membr. Sci. 431 (2013), 233-243][J]. Journal of Membrane Science, 2013, 437: 312..

[22] BROCH L, JOHANN L, STEIN N et al. Real time in situ ellipsometric and gravimetric monitoring for electrochemistry experiments[J]. Review of Scientific Instruments, 2007, 78(6).

[23] BISIO F, PRATO M, BARBORINI E et al. Interaction of alkanethiols with nanoporous cluster-assembled Au films[J]. Langmuir, 2011, 27(13): 8371-8376.

[24] 李廣立. 氧化亞銅薄膜的制備及其光電性能研究[D]. 西南交通大學(xué), 2016.

[25] 董金礦. 氧化亞銅薄膜的制備及其光催化性能的研究[D]. 安徽建筑大學(xué), 2014.

[26] 張楨. 氧化亞銅薄膜的電化學(xué)制備及其光催化和光電性能的研究[D]. 上海交通大學(xué)材料科 學(xué)與工程學(xué)院, 2013.

[27] DISSERTATION M. Cellulose Derivative and Lanthanide Complex Thin Film Cellulose Derivative and Lanthanide Complex Thin Film[J]. 2017.

[28] NIE J, YU X, HU D et al. Preparation and Properties of Cu2O/TiO2 heterojunction Nanocomposite for Rhodamine B Degradation under visible light[J]. ChemistrySelect, 2020, 5(27): 8118-8128.

[29] STRASSER P, GLIECH M, KUEHL S et al. Electrochemical processes on solid shaped nanoparticles with defined facets[J]. Chemical Society Reviews, 2018, 47(3): 715-735.

[30] XU Z, CHEN Y, ZHANG Z et al. Progress of research on underpotential deposition——I. Theory of underpotential deposition[J]. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2015, 31(7): 1219-1230.

[31] PANGAROV n. Thermodynamics of electrochemical phase formation and underpotential metal deposition[J]. Electrochimica Acta, 1983, 28(6): 763-775.

[32] KAYASTH S. ELECTRODEPOSITION STUDIES OF RARE EARTHS[J]. Methods in Geochemistry and Geophysics, 1972, 6(C): 5-13.

[33] KONDO T, TAKAKUSAGI S, UOSAKI K. Stability of underpotentially deposited Ag layers on a Au(1 1 1) surface studied by surface X-ray scattering[J]. Electrochemistry Communications, 2009, 11(4): 804-807.

[34] GASPAROTTO L H S, BORISENKO N, BOCCHI N et al. In situ STM investigation of the lithium underpotential deposition on Au(111) in the air- and water-stable ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide[J]. Physical Chemistry Chemical Physics, 2009, 11(47): 11140-11145.

[35] SARABIA F J, CLIMENT V, FELIU J M. Underpotential deposition of Nickel on platinum single crystal electrodes[J]. Journal of Electroanalytical Chemistry, 2018, 819(V): 391-400.

[36] BARD A J, FAULKNER L R, SWAIN E et al. Fundamentals and Applications[M]. John Wiley & Sons, Inc, 2001.

[37] SCHWEINER F, MAIN J, FELDMAIER M et al. Impact of the valence band structure of Cu2O on excitonic spectra[J]. Physical Review B, 2016, 93(19): 1-16.

 [38] XIONG L, HUANG S, YANG X et al. P-Type and n-type Cu2O semiconductor thin films: Controllable preparation by simple solvothermal method and photoelectrochemical properties[J]. Electrochimica Acta, 2011, 56(6): 2735-2739.

[39] KAZIMIERCZUK T, FR?HLICH D, SCHEEL S et al. Giant Rydberg excitons in the copper oxide Cu2O[J]. Nature, 2014, 514(7522): 343-347.

[40] RAEBIGER H, LANY S, ZUNGER A. Origins of the p-type nature and cation deficiency in Cu2 O and related materials[J]. Physical Review B - Condensed Matter and Materials Physics, 2007, 76(4): 1-5.

[41] 舒云. Cu2O薄膜的電化學(xué)制備及其光電化學(xué)性能的研究[D]. 云南大學(xué)物理與天文學(xué)院龄毡,2019.

閱讀延伸

展示全部  up

国产福利姬视频在线观看,国产原创激情在线观看网站,亚洲欧美日韩激色国产精品,日韩精品亚洲国产