首頁  技術(shù)文章  橢偏儀在位表征電化學沉積的系統(tǒng)搭建(二十八)- 中心能量的演變

橢偏儀在位表征電化學沉積的系統(tǒng)搭建(二十八)- 中心能量的演變

發(fā)布時間:2024-05-22 17:13:40 瀏覽量:935 作者:Alex

摘要

依據(jù)實驗組前期對CU2O薄膜沉積的實驗糕簿,選擇-0.4mA進行兩電極的恒流沉積探入,并用橢偏儀進行在位監(jiān)測,每沉積180s后進行300nm到800nm的橢偏測試懂诗。即在沉積180s蜂嗽、360s、540s植旧、720s、900s离唐、1080s后分別進行了橢偏儀全譜測試病附,測試角度為70°。

正文


橢偏儀在位表征電化學沉積的系統(tǒng)搭建(二十八)- 中心能量的演變


1.短波范圍


圖4-13是CU2O激遷圖(b)和300nm-500nm擬合得到的不同沉積時間中心能量值(a)亥鬓。從圖4-1(a)中看到完沪,在有自旋能級分裂時,一部分CU2O激子躍遷將如圖所示嵌戈。圖(a)是在300nm-500nm波段用四振子Lorentz Oscillator+Drude模型擬合得到的不同沉積時間下的中心能量以及代表了不同類型的激子激發(fā)相應(yīng)的能量線覆积。可以看到180 s和900s得到了三個擬合中心能量熟呛,其余時間得到了四個中心能量技健。從中心能量與橫線的對比中看出,在沉積時間為180s時的三個中心能量分別為EOA/EOB(EOA/EOB表示該能量是EOA或者EOB激子吸收峰)惰拱、EOC/EODE1A激子吸收峰啊送;360s出現(xiàn)的前兩個能量為EOA/EOB激子吸收峰,后兩個能量分別為EOC/EODE1A激子吸收峰欣孤;540s前兩個能量分別為EOC/EODE1A激子吸收峰馋没,后兩個能量可能是E1B激子吸收峰,同時也可能是E2能級上的電子躍遷吸收峰降传;720s第1個能量為EOC/EOD激子吸收峰篷朵,中間兩個為E1A激子吸收峰,zui后一個能量超過在16eV婆排,可引發(fā)E0声旺、E1及E2能帶的躍遷,具體屬于哪個激子吸收峰有待進一步驗證段只;900s時的三個中心能量分別為EOC/EOD腮猖、E1AE1B激子吸收峰;1080s的四個中心能量分別屬于EODA赞枕、EOC澈缺、EOD E1A激子吸收峰。


圖4-13 (a)300nm-500nm擬合得到的不同沉積時間中心能量值;

(b)CU2O激子躍遷圖


2.長波范圍

由于對0s時和其他沉積時間用的擬合方法是逐點擬合炕婶,所以不能得到相應(yīng)的中心能量值姐赡,但是可以通過把擬合得到的值和對應(yīng)的能量相關(guān)聯(lián),畫出0s時300nm-800nm及其余時間500nm-800nm的圖柠掂,在對曲線線性部分進行擬合,得到的E軸的截距即為中心能量涯贞,如4-14所示枪狂。圖4-14(a)是不同時間得到的在能量為1.55-2.48eV范圍曲線,可以看到0s于2.1eV后增加較快肩狂,且存1處的線性變化段。其余不同沉積時間得到的圖線變化不大姥饰,在1.55-2.1eV段與0s的重合傻谁;在2.1-2.48eV段180s的增加后基本穩(wěn)定,720s的介于180s和其余時間之間列粪。整體上認為1.55-2.4eV段更多反映的是基底的信息审磁,沒有線性變化的階段。圖4-14(b)是0s時1.55eV-4.13eV的圖線岂座,可看到除了前面提到的線性擬合段态蒂,在后面2.48-4.13eV段又存在兩個線性變化的區(qū)域,擬合如圖费什。


圖4-14(c)是0s時3段線性擬合得到的E軸截距钾恢,對應(yīng)于材料的能隙或電子的躍遷光吸收。從圖可知前兩個截距在2-3eV之間,zui后一個在3-4eV之間瘩蚪,所以0s時對應(yīng)三個能量泉懦。前兩個可能對應(yīng)Au基底的表面等離子體共振吸收峰,zui后一個可能對應(yīng)3d疹瘦、4d和6sp的帶間躍遷吸收以及6sp到7sp的導帶間躍遷吸收崩哩。


圖4-14 隨E的變化及不同波段擬合

(a) 不同時間1.55-2.48eV;

(b)0s對應(yīng)的1.55eV-4.13eV;

(c)0s對應(yīng)的擬合得到的E軸截距



了解更多橢偏儀詳情言沐,請訪問上海昊量光電的官方網(wǎng)頁:

http://www.wjjzl.com/three-level-56.html


更多詳情請聯(lián)系昊量光電/歡迎直接聯(lián)系昊量光電

關(guān)于昊量光電:

上海昊量光電設(shè)備有限公司是光電產(chǎn)品專業(yè)代理商邓嘹,產(chǎn)品包括各類激光器、光電調(diào)制器险胰、光學測量設(shè)備汹押、光學元件等,涉及應(yīng)用涵蓋了材料加工鸯乃、光通訊鲸阻、生物醫(yī)療、科學研究缨睡、國防鸟悴、量子光學奖年、生物顯微细诸、物聯(lián)傳感、激光制造等陋守;可為客戶提供完整的設(shè)備安裝震贵,培訓,硬件開發(fā)水评,軟件開發(fā)猩系,系統(tǒng)集成等服務(wù)。

您可以通過我們昊量光電的官方網(wǎng)站www.wjjzl.com了解更多的產(chǎn)品信息中燥,或直接來電咨詢4006-888-532寇甸。


參考文獻

[1] WONG H S P, FRANK D J, SOLOMON P M et al. Nanoscale cmos[J]. Proceedings of the IEEE, 1999, 87(4): 537-570.

[2] LOSURDO M, HINGERL K. ellipsometry at the nanoscale[M]. Springer Heidelberg New York Dordrecht London. 2013.

[3] DYRE J C. Universal low-temperature ac conductivity of macroscopically disordered nonmetals[J]. Physical Review B, 1993, 48(17): 12511-12526. DOI:10.1103/PhysRevB.48.12511.

[4] CHEN S, KüHNE P, STANISHEV V et al. On the anomalous optical conductivity dISPersion of electrically conducting polymers: Ultra-wide spectral range ellipsometry combined with a Drude-Lorentz model[J]. Journal of Materials Chemistry C, 2019, 7(15): 4350-4362.

[5] 陳籃,周巖. 膜厚度測量的橢偏儀法原理分析[J]. 大學物理實驗, 1999, 12(3): 10-13.

[6] ZAPIEN J A, COLLINS R W, MESSIER R. Multichannel ellipsometer for real time spectroscopy of thin film deposition from 1.5 to 6.5 eV[J]. Review of Scientific Instruments, 2000, 71(9): 3451-3460.

[7] DULTSEV F N, KOLOSOVSKY E A. Application of ellipsometry to control the plasmachemical synthesis of thin TiONx layers[J]. Advances in Condensed Matter Physics, 2015, 2015: 1-8.

[8] DULTSEV F N, KOLOSOVSKY E A. Application of ellipsometry to control the plasmachemical synthesis of thin TiONx layers[J]. Advances in Condensed Matter Physics, 2015, 2015: 1-8.

[9] YUAN M, YUAN L, HU Z et al. In Situ Spectroscopic Ellipsometry for Thermochromic CsPbI3 Phase Evolution Portfolio[J]. Journal of Physical Chemistry C, 2020, 124(14): 8008-8014.

[10] 焦楊.橢偏儀在位表征電化學沉積的系統(tǒng)搭建.云南大學說是論文,2022.

[11] CANEPA M, MAIDECCHI G, TOCCAFONDI C et al. Spectroscopic ellipsometry of self assembLED monolayers: Interface effects. the case of phenyl selenide SAMs on gold[J]. Physical Chemistry Chemical Physics, 2013, 15(27): 11559-11565. DOI:10.1039/c3cp51304a.

[12] FUJIWARA H, KONDO M, MATSUDA A. Interface-layer formation in microcrystalline Si:H growth on ZnO substrates studied by real-time spectroscopic ellipsometry and infrared spectroscopy[J]. Journal of Applied Physics, 2003, 93(5): 2400-2409.

[13] FUJIWARA H, TOYOSHIMA Y, KONDO M et al. Interface-layer formation mechanism in (formula presented) thin-film growth studied by real-time spectroscopic ellipsometry and infrared spectroscopy[J]. Physical Review B - Condensed Matter and Materials Physics, 1999, 60(19): 13598-13604.

[14] LEE W K, KO J S. Kinetic model for the simulation of hen egg white lysozyme adsorption at solid/water interface[J]. Korean Journal of Chemical Engineering, 2003, 20(3): 549-553.

[15] STAMATAKI K, PAPADAKIS V, EVEREST M A et al. Monitoring adsorption and sedimentation using evanescent-wave cavity ringdown ellipsometry[J]. Applied Optics, 2013, 52(5): 1086-1093.

[16] VIEGAS D, FERNANDES E, QUEIRóS R et al. Adapting Bobbert-Vlieger model to spectroscopic ellipsometry of gold nanoparticles with bio-organic shells[J]. Biomedical Optics Express, 2017, 8(8): 3538.

[17] ARWIN H. Application of ellipsometry techniques to biological materials[J]. Thin Solid Films, 2011, 519(9): 2589-2592.

[18] ZIMMER A, VEYS-RENAUX D, BROCH L et al. In situ spectroelectrochemical ellipsometry using super continuum white laser: Study of the anodization of magnesium alloy [J]. Journal of Vacuum Science & Technology B, 2019, 37(6): 062911.

[19] ZANGOOIE S, BJORKLUND R, ARWIN H. Water Interaction with Thermally Oxidized Porous Silicon Layers[J]. Journal of The Electrochemical Society, 1997, 144(11): 4027-4035.

[20] KYUNG Y B, LEE S, OH H et al. Determination of the optical functions of various liquids by rotating compensator multichannel spectroscopic ellipsometry[J]. Bulletin of the Korean Chemical Society, 2005, 26(6): 947-951.

[21] OGIEGLO W, VAN DER WERF H, TEMPELMAN K et al. Erratum to ― n-Hexane induced swelling of thin PDMS films under non-equilibrium nanofiltration permeation conditions, resolved by spectroscopic ellipsometry‖ [J. Membr. Sci. 431 (2013), 233-243][J]. Journal of Membrane Science, 2013, 437: 312..

[22] BROCH L, JOHANN L, STEIN N et al. Real time in situ ellipsometric and gravimetric monitoring for electrochemistry experiments[J]. Review of Scientific Instruments, 2007, 78(6).

[23] BISIO F, PRATO M, BARBORINI E et al. Interaction of alkanethiols with nanoporous cluster-assembled Au films[J]. Langmuir, 2011, 27(13): 8371-8376.

[24] 李廣立. 氧化亞銅薄膜的制備及其光電性能研究[D]. 西南交通大學, 2016.

[25] 董金礦. 氧化亞銅薄膜的制備及其光催化性能的研究[D]. 安徽建筑大學, 2014.

[26] 張楨. 氧化亞銅薄膜的電化學制備及其光催化和光電性能的研究[D]. 上海交通大學材料科 學與工程學院, 2013.

[27] DISSERTATION M. Cellulose Derivative and Lanthanide Complex Thin Film Cellulose Derivative and Lanthanide Complex Thin Film[J]. 2017.

[28] NIE J, YU X, HU D et al. Preparation and Properties of Cu2O/TiO2 heterojunction Nanocomposite for Rhodamine B Degradation under visible light[J]. ChemistrySelect, 2020, 5(27): 8118-8128.

[29] STRASSER P, GLIECH M, KUEHL S et al. Electrochemical processes on solid shaped nanoparticles with defined facets[J]. Chemical Society Reviews, 2018, 47(3): 715-735.

[30] XU Z, CHEN Y, ZHANG Z et al. Progress of research on underpotential deposition——I. Theory of underpotential deposition[J]. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2015, 31(7): 1219-1230.

[31] PANGAROV n. Thermodynamics of electrochemical phase formation and underpotential metal deposition[J]. Electrochimica Acta, 1983, 28(6): 763-775.

[32] KAYASTH S. ELECTRODEPOSITION STUDIES OF RARE EARTHS[J]. Methods in Geochemistry and Geophysics, 1972, 6(C): 5-13.

[33] KONDO T, TAKAKUSAGI S, UOSAKI K. Stability of underpotentially deposited Ag layers on a Au(1 1 1) surface studied by surface X-ray scattering[J]. Electrochemistry Communications, 2009, 11(4): 804-807.

[34] GASPAROTTO L H S, BORISENKO N, BOCCHI N et al. In situ STM investigation of the lithium underpotential deposition on Au(111) in the air- and water-stable ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide[J]. Physical Chemistry Chemical Physics, 2009, 11(47): 11140-11145.

[35] SARABIA F J, CLIMENT V, FELIU J M. Underpotential deposition of Nickel on platinum single crystal electrodes[J]. Journal of Electroanalytical Chemistry, 2018, 819(V): 391-400.

[36] BARD A J, FAULKNER L R, SWAIN E et al. Fundamentals and Applications[M]. John Wiley & Sons, Inc, 2001.

[37] SCHWEINER F, MAIN J, FELDMAIER M et al. Impact of the valence band structure of Cu2O on excitonic spectra[J]. Physical Review B, 2016, 93(19): 1-16.

 [38] XIONG L, HUANG S, YANG X et al. P-Type and n-type Cu2O semiconductor thin films: Controllable preparation by simple solvothermal method and photoelectrochemical properties[J]. Electrochimica Acta, 2011, 56(6): 2735-2739.

[39] KAZIMIERCZUK T, FR?HLICH D, SCHEEL S et al. Giant Rydberg excitons in the copper oxide Cu2O[J]. Nature, 2014, 514(7522): 343-347.

[40] RAEBIGER H, LANY S, ZUNGER A. Origins of the p-type nature and cation deficiency in Cu2 O and related materials[J]. Physical Review B - Condensed Matter and Materials Physics, 2007, 76(4): 1-5.

[41] 舒云. Cu2O薄膜的電化學制備及其光電化學性能的研究[D]. 云南大學物理與天文學院拿霉,2019.

閱讀延伸

展示全部  up

国产福利姬视频在线观看,国产原创激情在线观看网站,亚洲欧美日韩激色国产精品,日韩精品亚洲国产