首頁  技術(shù)文章  橢偏儀在位表征電化學(xué)沉積的系統(tǒng)搭建(三十二)- 總結(jié)與展望

橢偏儀在位表征電化學(xué)沉積的系統(tǒng)搭建(三十二)- 總結(jié)與展望

發(fā)布時間:2024-06-27 17:13:33 瀏覽量:962 作者:Alex

摘要

本文主要針對橢偏儀在位檢測薄膜沉積系統(tǒng)搭建吃谣,并以薄膜的沉積進(jìn)行了在位監(jiān)測與分析乞封。包括:(1)在位監(jiān)控裝置的設(shè)計做裙。(2)不同溶液濃度對實驗的影響。(3)橢偏儀在位監(jiān)測薄膜的生長過程肃晚。

正文


橢偏儀在位表征電化學(xué)沉積的系統(tǒng)搭建(三十二)- 總結(jié)與展望


上文主要用設(shè)計的微流腔體進(jìn)行了橢偏儀的在位監(jiān)測與分析锚贱。實驗包括三個部分,一是不同電流下Cu2O膜的沉積关串;二是準(zhǔn)在位橢偏儀監(jiān)測Cu2O薄膜的沉積過程拧廊,即每沉積180s后進(jìn)行300-800nm波段的橢偏儀測試,共測試了6組(180-1080s)晋修;三是實驗是橢偏儀在位監(jiān)測Cu2O薄膜的沉積過程吧碾,0-1080s,橢偏儀取樣時間約為13s墓卦。經(jīng)過對實驗得到的橢偏譜分析擬合知:


1.對于該微流電解池體系倦春,用-0.4mA的恒流沉積可以得到單一的Cu2O薄膜,故而后續(xù)實驗選-0.4mA作為沉積電流落剪;


2.準(zhǔn)在位橢偏儀監(jiān)測Cu2O薄膜的沉積得到橢偏譜整沒有呈現(xiàn)出隨沉積時間的一致變化規(guī)律睁本,但是和0s比,由于Cu2O薄膜的出現(xiàn)忠怖,R值變小了呢堰。擬合得到的厚度顯示沉積速率是隨著時間發(fā)生變化的,Cu2O薄膜的生長方式可能是島狀和層狀生長相結(jié)合凡泣,其中單獨(dú)層狀生長擬合得到的庫倫轉(zhuǎn)換效率為36%枉疼,單獨(dú)島狀生長得到的庫倫轉(zhuǎn)換效率為50%皮假。


3.通過單波長實時在位監(jiān)測Cu2O薄膜的沉積發(fā)現(xiàn),用準(zhǔn)在位擬合得到的薄膜厚生長速率計算出的Psi和Delta值和實驗測試得到的值在數(shù)值和峰位上都有差別這可能與沉積過程的差異有關(guān)骂维。在準(zhǔn)在位全譜掃描中是每沉積180s后停下來進(jìn)行約17分鐘測橢偏測試钞翔,然后再重復(fù)測試到沉積時間為1080s,而單波長測試是不間斷沉積1080s席舍。所以可能由于沉積中間的間隔帶來薄膜表面的差異布轿,進(jìn)而影響得到薄膜的表面形貌。通過SEM對比發(fā)現(xiàn)来颤,連續(xù)沉積的1080s得到的Cu2O薄膜表面島狀較明顯汰扭,這也是導(dǎo)致實驗和計算得到的Psi和Delta值不同的原因。


本文主要針對橢偏儀在位檢測薄膜沉積系統(tǒng)搭建福铅,并以Cu2O薄膜的沉積為例進(jìn)行了實時在位監(jiān)測與分析萝毛。研究內(nèi)容包括了:(1)在位監(jiān)控裝置的設(shè)計。主要展開電解池的設(shè)計滑黔,包括用COMSOL進(jìn)行電場分布的擬合笆包,從而設(shè)計電極的位置等。并根據(jù)實驗和光路的調(diào)節(jié)的優(yōu)化制備了兩種類型的電解池略荡。(2)不同溶液濃度對實驗的影響庵佣。用Pb溶液為案例,進(jìn)行了不同濃度的Pb溶液的橢偏譜汛兜。(3)橢偏儀在位監(jiān)測Cu2O薄膜的生長過程巴粪。研究包括全譜(300-800nm)橢偏儀Cu2O薄膜沉積的準(zhǔn)在位監(jiān)測以及單波長(380nm)橢偏儀Cu2O薄膜沉積的在位監(jiān)測。主要結(jié)論包括:

(1)設(shè)計和制備了用于橢偏儀電化學(xué)在位測試的微流腔體電解池粥谬。

(2)利用微流腔體的電化學(xué)電解池肛根,用全譜橢偏儀在位監(jiān)測Cu2O薄膜的沉積過程。利用光學(xué)模型的建立擬合橢偏譜得到了不同沉積時間下的薄膜光學(xué)常數(shù)漏策、介電常數(shù)及厚度派哲。從而得到層狀模型下平均沉積速率為0.40nm/s。另外也發(fā)現(xiàn)掺喻,時間較短范圍內(nèi)(<360s)芭届,Cu2O的生長為非線性,更趨近于島狀生長巢寡,通過擬合得到其生長沉積速率為d'=0.005t0.72nm/s喉脖,平均庫倫效率為50%。


(3)橢偏儀單波長(380nm)實時監(jiān)控Cu2O薄膜沉積:在同樣的沉積條件下實時監(jiān)控在Au基底上的Cu2O薄膜沉積(0-1080s)抑月,采樣時間約為13s树叽。實驗發(fā)現(xiàn)Psi和Delta的實驗值與利用全波長厚度擬合得到橢偏參數(shù)有所差異。這個差異可能來源于用于全譜測試時的測試所用的生長時間谦絮,實際上忽略了生長層在沒有加電壓并進(jìn)行橢偏儀測試時(>17min)產(chǎn)生的變化题诵。SEM也發(fā)現(xiàn)兩種情況下(1080s)得到的Cu2O薄膜的表面形貌不同洁仗。


本課題通過設(shè)計微流腔體電解池實現(xiàn)了橢偏儀在位監(jiān)測Cu2O薄膜的電化學(xué)沉積過程。


通過本次的研究性锭,對型號為Ellip-SR-I的橢偏儀在位監(jiān)測電化學(xué)薄膜沉積進(jìn)行了擴(kuò)展赠潦,為其他類似的監(jiān)測提供案例。但是本課題研究中還存在一些待解決的問題:

(1)需進(jìn)一步設(shè)計全譜掃描和單波長掃描的測試條件草冈。

(2)提高全譜掃描的測試時間:通過采樣率或者減少波長范圍她奥。

(3)進(jìn)一步用光刻等技術(shù)制備微流腔體,更好的控制液流降低液流等造成的影響怎棱。


了解更多橢偏儀詳情哩俭,請訪問上海昊量光電的官方網(wǎng)頁:

http://www.wjjzl.com/three-level-56.html


更多詳情請聯(lián)系昊量光電/歡迎直接聯(lián)系昊量光電

關(guān)于昊量光電:

上海昊量光電設(shè)備有限公司是光電產(chǎn)品專業(yè)代理商,產(chǎn)品包括各類激光器拳恋、光電調(diào)制器凡资、光學(xué)測量設(shè)備、光學(xué)元件等谬运,涉及應(yīng)用涵蓋了材料加工隙赁、光通訊、生物醫(yī)療梆暖、科學(xué)研究伞访、國防、量子光學(xué)式廷、生物顯微咐扭、物聯(lián)傳感、激光制造等滑废;可為客戶提供完整的設(shè)備安裝,培訓(xùn)袜爪,硬件開發(fā)蠕趁,軟件開發(fā),系統(tǒng)集成等服務(wù)辛馆。

您可以通過我們昊量光電的官方網(wǎng)站www.wjjzl.com了解更多的產(chǎn)品信息俺陋,或直接來電咨詢4006-888-532。


參考文獻(xiàn)

[1] WONG H S P, FRANK D J, SOLOMON P M et al. Nanoscale cmos[J]. Proceedings of the IEEE, 1999, 87(4): 537-570.

[2] LOSURDO M, HINGERL K. ellipsometry at the nanoscale[M]. Springer Heidelberg New York Dordrecht London. 2013.

[3] DYRE J C. Universal low-temperature ac conductivity of macroscopically disordered nonmetals[J]. Physical Review B, 1993, 48(17): 12511-12526. DOI:10.1103/PhysRevB.48.12511.

[4] CHEN S, KüHNE P, STANISHEV V et al. On the anomalous optical conductivity dISPersion of electrically conducting polymers: Ultra-wide spectral range ellipsometry combined with a Drude-Lorentz model[J]. Journal of Materials Chemistry C, 2019, 7(15): 4350-4362.

[5] 陳籃昙篙,周巖. 膜厚度測量的橢偏儀法原理分析[J]. 大學(xué)物理實驗, 1999, 12(3): 10-13.

[6] ZAPIEN J A, COLLINS R W, MESSIER R. Multichannel ellipsometer for real time spectroscopy of thin film deposition from 1.5 to 6.5 eV[J]. Review of Scientific Instruments, 2000, 71(9): 3451-3460.

[7] DULTSEV F N, KOLOSOVSKY E A. Application of ellipsometry to control the plasmachemical synthesis of thin TiONx layers[J]. Advances in Condensed Matter Physics, 2015, 2015: 1-8.

[8] DULTSEV F N, KOLOSOVSKY E A. Application of ellipsometry to control the plasmachemical synthesis of thin TiONx layers[J]. Advances in Condensed Matter Physics, 2015, 2015: 1-8.

[9] YUAN M, YUAN L, HU Z et al. In Situ Spectroscopic Ellipsometry for Thermochromic CsPbI3 Phase Evolution Portfolio[J]. Journal of Physical Chemistry C, 2020, 124(14): 8008-8014.

[10] 焦楊.橢偏儀在位表征電化學(xué)沉積的系統(tǒng)搭建.云南大學(xué)說是論文,2022.

[11] CANEPA M, MAIDECCHI G, TOCCAFONDI C et al. Spectroscopic ellipsometry of self assembLED monolayers: Interface effects. the case of phenyl selenide SAMs on gold[J]. Physical Chemistry Chemical Physics, 2013, 15(27): 11559-11565. DOI:10.1039/c3cp51304a.

[12] FUJIWARA H, KONDO M, MATSUDA A. Interface-layer formation in microcrystalline Si:H growth on ZnO substrates studied by real-time spectroscopic ellipsometry and infrared spectroscopy[J]. Journal of Applied Physics, 2003, 93(5): 2400-2409.

[13] FUJIWARA H, TOYOSHIMA Y, KONDO M et al. Interface-layer formation mechanism in (formula presented) thin-film growth studied by real-time spectroscopic ellipsometry and infrared spectroscopy[J]. Physical Review B - Condensed Matter and Materials Physics, 1999, 60(19): 13598-13604.

[14] LEE W K, KO J S. Kinetic model for the simulation of hen egg white lysozyme adsorption at solid/water interface[J]. Korean Journal of Chemical Engineering, 2003, 20(3): 549-553.

[15] STAMATAKI K, PAPADAKIS V, EVEREST M A et al. Monitoring adsorption and sedimentation using evanescent-wave cavity ringdown ellipsometry[J]. Applied Optics, 2013, 52(5): 1086-1093.

[16] VIEGAS D, FERNANDES E, QUEIRóS R et al. Adapting Bobbert-Vlieger model to spectroscopic ellipsometry of gold nanoparticles with bio-organic shells[J]. Biomedical Optics Express, 2017, 8(8): 3538.

[17] ARWIN H. Application of ellipsometry techniques to biological materials[J]. Thin Solid Films, 2011, 519(9): 2589-2592.

[18] ZIMMER A, VEYS-RENAUX D, BROCH L et al. In situ spectroelectrochemical ellipsometry using super continuum white laser: Study of the anodization of magnesium alloy [J]. Journal of Vacuum Science & Technology B, 2019, 37(6): 062911.

[19] ZANGOOIE S, BJORKLUND R, ARWIN H. Water Interaction with Thermally Oxidized Porous Silicon Layers[J]. Journal of The Electrochemical Society, 1997, 144(11): 4027-4035.

[20] KYUNG Y B, LEE S, OH H et al. Determination of the optical functions of various liquids by rotating compensator multichannel spectroscopic ellipsometry[J]. Bulletin of the Korean Chemical Society, 2005, 26(6): 947-951.

[21] OGIEGLO W, VAN DER WERF H, TEMPELMAN K et al. Erratum to ― n-Hexane induced swelling of thin PDMS films under non-equilibrium nanofiltration permeation conditions, resolved by spectroscopic ellipsometry‖ [J. Membr. Sci. 431 (2013), 233-243][J]. Journal of Membrane Science, 2013, 437: 312..

[22] BROCH L, JOHANN L, STEIN N et al. Real time in situ ellipsometric and gravimetric monitoring for electrochemistry experiments[J]. Review of Scientific Instruments, 2007, 78(6).

[23] BISIO F, PRATO M, BARBORINI E et al. Interaction of alkanethiols with nanoporous cluster-assembled Au films[J]. Langmuir, 2011, 27(13): 8371-8376.

[24] 李廣立. 氧化亞銅薄膜的制備及其光電性能研究[D]. 西南交通大學(xué), 2016.

[25] 董金礦. 氧化亞銅薄膜的制備及其光催化性能的研究[D]. 安徽建筑大學(xué), 2014.

[26] 張楨. 氧化亞銅薄膜的電化學(xué)制備及其光催化和光電性能的研究[D]. 上海交通大學(xué)材料科 學(xué)與工程學(xué)院, 2013.

[27] DISSERTATION M. Cellulose Derivative and Lanthanide Complex Thin Film Cellulose Derivative and Lanthanide Complex Thin Film[J]. 2017.

[28] NIE J, YU X, HU D et al. Preparation and Properties of Cu2O/TiO2 heterojunction Nanocomposite for Rhodamine B Degradation under visible light[J]. ChemistrySelect, 2020, 5(27): 8118-8128.

[29] STRASSER P, GLIECH M, KUEHL S et al. Electrochemical processes on solid shaped nanoparticles with defined facets[J]. Chemical Society Reviews, 2018, 47(3): 715-735.

[30] XU Z, CHEN Y, ZHANG Z et al. Progress of research on underpotential deposition——I. Theory of underpotential deposition[J]. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2015, 31(7): 1219-1230.

[31] PANGAROV n. Thermodynamics of electrochemical phase formation and underpotential metal deposition[J]. Electrochimica Acta, 1983, 28(6): 763-775.

[32] KAYASTH S. ELECTRODEPOSITION STUDIES OF RARE EARTHS[J]. Methods in Geochemistry and Geophysics, 1972, 6(C): 5-13.

[33] KONDO T, TAKAKUSAGI S, UOSAKI K. Stability of underpotentially deposited Ag layers on a Au(1 1 1) surface studied by surface X-ray scattering[J]. Electrochemistry Communications, 2009, 11(4): 804-807.

[34] GASPAROTTO L H S, BORISENKO N, BOCCHI N et al. In situ STM investigation of the lithium underpotential deposition on Au(111) in the air- and water-stable ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide[J]. Physical Chemistry Chemical Physics, 2009, 11(47): 11140-11145.

[35] SARABIA F J, CLIMENT V, FELIU J M. Underpotential deposition of Nickel on platinum single crystal electrodes[J]. Journal of Electroanalytical Chemistry, 2018, 819(V): 391-400.

[36] BARD A J, FAULKNER L R, SWAIN E et al. Fundamentals and Applications[M]. John Wiley & Sons, Inc, 2001.

[37] SCHWEINER F, MAIN J, FELDMAIER M et al. Impact of the valence band structure of Cu2O on excitonic spectra[J]. Physical Review B, 2016, 93(19): 1-16.

 [38] XIONG L, HUANG S, YANG X et al. P-Type and n-type Cu2O semiconductor thin films: Controllable preparation by simple solvothermal method and photoelectrochemical properties[J]. Electrochimica Acta, 2011, 56(6): 2735-2739.

[39] KAZIMIERCZUK T, FR?HLICH D, SCHEEL S et al. Giant Rydberg excitons in the copper oxide Cu2O[J]. Nature, 2014, 514(7522): 343-347.

[40] RAEBIGER H, LANY S, ZUNGER A. Origins of the p-type nature and cation deficiency in Cu2 O and related materials[J]. Physical Review B - Condensed Matter and Materials Physics, 2007, 76(4): 1-5.

[41] 舒云. Cu2O薄膜的電化學(xué)制備及其光電化學(xué)性能的研究[D]. 云南大學(xué)物理與天文學(xué)院腊状,2019.

閱讀延伸

展示全部  up

国产福利姬视频在线观看,国产原创激情在线观看网站,亚洲欧美日韩激色国产精品,日韩精品亚洲国产