橢偏儀在位監(jiān)測中铃肯,裝置的設(shè)計是重點,要考慮池體的大小缘薛、溶液的容量窍育、光路經(jīng)過的介質(zhì)、電極的放置等問題宴胧,本章主要介紹實驗裝置的設(shè)計漱抓、改進以及對應(yīng)的一些測試實驗。
展示全部
橢偏儀在位表征電化學沉積的系統(tǒng)搭建(十四)- 在位監(jiān)控裝置的設(shè)計
之前簡要介紹了在鍍Au的硅片基底上用電化學方法沉積Cu2O薄膜并進行橢偏測試的制備過程恕齐、表征方法和實驗中所用的試劑及設(shè)備乞娄,對基底電極Au/Si清洗和制備過程進行了詳細描寫,接著介紹了形貌表征及電化學測試等手段显歧,如:橢偏儀測試與建模擬合仪或,X-ray進行對樣品的物相分析,SEM可觀察薄膜的微觀形貌士骤。這些測試可以分析出Cu2O薄膜的光學形貌等特點范删。
而在橢偏儀在位監(jiān)測中,裝置的設(shè)計是重點拷肌,要考慮池體的大小到旦、溶液的容量、光路經(jīng)過的介質(zhì)巨缘、電極的放置等問題添忘,本章主要介紹實驗裝置的設(shè)計、改進以及對應(yīng)的一些測試實驗若锁。
3.1開放容器
在開始設(shè)計裝置之前搁骑,用玻璃培養(yǎng)皿進行了實驗,實驗的目的是看不同溶液厚度對橢偏儀所測數(shù)據(jù)的影響又固。以醋酸鈉仲器、醋酸鉛(1MNaCH3COO仰冠、10mMPbPb[CH3COO]2)為溶液娄周,鍍金硅(Au/Si)為基底,進行不同溶液厚度的橢偏測試沪停。
把25px×30px的Au/Si基底放入直徑為260px的培養(yǎng)皿底,其厚度0.53mm,則體積是0.064cm3木张。經(jīng)過計算光經(jīng)過溶液后打在基底上再返回众辨,要使得在溶液中經(jīng)過的光程是25px、50px舷礼、75px鹃彻、100px、125px和150px妻献,則要向?qū)?yīng)培養(yǎng)皿中加入18.9cm3蛛株、33.5cm3、48.0cm3育拨、62.5cm3谨履、77.1cm3和91.6cm3的溶液。在培養(yǎng)皿中先后加入上述體積的溶液熬丧,進行入射角度為70°笋粟,波長范圍為300nm-800nm的橢偏測量,測試得到的橢偏參數(shù)如圖3-1所示析蝴。
圖3-1不同溶液厚度的橢偏儀測試(a)Psi害捕;(b)Delta
從圖3-1(a)可知,隨著溶液的加入闷畸,溶液中的光程從0變化到150px尝盼。其中光程為25px、75px時測得的結(jié)果比0時要小佑菩,且曲線趨勢也不同盾沫;光程為50px、100px倘待、125px疮跑、150px時測得的數(shù)據(jù)比0時要大,且曲線的變化趨勢大致相同凸舵,隨著溶液的增加祖娘,差值增加啊奄,但是在加到5渐苏、150px時達到了極值,從圖中可以看到5菇夸、150px時結(jié)果靠得非常近琼富。
從圖3-1(b)圖可知,隨著溶液的加入庄新,溶液中的光程從0變化到150px鞠眉。其中光程為25px薯鼠,75px時測得的結(jié)果比0時要小,且曲線趨勢和也相同械蹋。光程為50px出皇、100px、125px哗戈、150px時測得的數(shù)據(jù)比0時要大郊艘,且曲線的變化趨勢大致相同,隨著溶液的增加唯咬,差值增加纱注,但是在加到5、150px時達到了極值胆胰,從圖中可以看到125px狞贱、150px時結(jié)果靠得非常近。
綜上所述煮剧,加入透明溶液對基底進行測試是可行的斥滤,但是溶液厚度會對測量結(jié)果帶來數(shù)值上的上下移動,溶液達到一定厚度后測試得到的數(shù)據(jù)會趨于穩(wěn)定勉盅。在該波段溶液的存在會帶來數(shù)據(jù)的波動佑颇。雖然敞開器皿作為池體很簡單方便,但是它也存在溶液敞開會有溶液紊動草娜,且存在測試時間長挑胸、溶液易被污染等對測試不利的因素,故需要重新設(shè)計其他電解池宰闰。
了解更多橢偏儀詳情茬贵,請訪問上海昊量光電的官方網(wǎng)頁:
http://www.wjjzl.com/three-level-56.html
更多詳情請聯(lián)系昊量光電/歡迎直接聯(lián)系昊量光電
關(guān)于昊量光電:
上海昊量光電設(shè)備有限公司是光電產(chǎn)品專業(yè)代理商,產(chǎn)品包括各類激光器解藻、光電調(diào)制器、光學測量設(shè)備葡盗、光學元件等螟左,涉及應(yīng)用涵蓋了材料加工、光通訊觅够、生物醫(yī)療胶背、科學研究、國防喘先、量子光學钳吟、生物顯微、物聯(lián)傳感窘拯、激光制造等红且;可為客戶提供完整的設(shè)備安裝坝茎,培訓,硬件開發(fā)直焙,軟件開發(fā)景东,系統(tǒng)集成等服務(wù)。
您可以通過我們昊量光電的官方網(wǎng)站www.wjjzl.com了解更多的產(chǎn)品信息奔誓,或直接來電咨詢4006-888-532。
相關(guān)文獻:
[1] WONG H S P, FRANK D J, SOLOMON P M et al. Nanoscale cmos[J]. Proceedings of the IEEE, 1999, 87(4): 537-570.
[2] LOSURDO M, HINGERL K. ellipsometry at the nanoscale[M]. Springer Heidelberg New York Dordrecht London. 2013.
[3] DYRE J C. Universal low-temperature ac conductivity of macroscopically disordered nonmetals[J]. Physical Review B, 1993, 48(17): 12511-12526. DOI:10.1103/PhysRevB.48.12511.
[4] CHEN S, KüHNE P, STANISHEV V et al. On the anomalous optical conductivity dISPersion of electrically conducting polymers: Ultra-wide spectral range ellipsometry combined with a Drude-Lorentz model[J]. Journal of Materials Chemistry C, 2019, 7(15): 4350-4362.
[5] 陳籃搔涝,周巖. 膜厚度測量的橢偏儀法原理分析[J]. 大學物理實驗, 1999, 12(3): 10-13.
[6] ZAPIEN J A, COLLINS R W, MESSIER R. Multichannel ellipsometer for real time spectroscopy of thin film deposition from 1.5 to 6.5 eV[J]. Review of Scientific Instruments, 2000, 71(9): 3451-3460.
[7] DULTSEV F N, KOLOSOVSKY E A. Application of ellipsometry to control the plasmachemical synthesis of thin TiONx layers[J]. Advances in Condensed Matter Physics, 2015, 2015: 1-8.
[8] DULTSEV F N, KOLOSOVSKY E A. Application of ellipsometry to control the plasmachemical synthesis of thin TiONx layers[J]. Advances in Condensed Matter Physics, 2015, 2015: 1-8.
[9] YUAN M, YUAN L, HU Z et al. In Situ Spectroscopic Ellipsometry for Thermochromic CsPbI3 Phase Evolution Portfolio[J]. Journal of Physical Chemistry C, 2020, 124(14): 8008-8014.
[10] 焦楊景.橢偏儀在位表征電化學沉積的系統(tǒng)搭建.云南大學說是論文,2022.
[11] CANEPA M, MAIDECCHI G, TOCCAFONDI C et al. Spectroscopic ellipsometry of self assembLED monolayers: Interface effects. the case of phenyl selenide SAMs on gold[J]. Physical Chemistry Chemical Physics, 2013, 15(27): 11559-11565. DOI:10.1039/c3cp51304a.
[12] FUJIWARA H, KONDO M, MATSUDA A. Interface-layer formation in microcrystalline Si:H growth on ZnO substrates studied by real-time spectroscopic ellipsometry and infrared spectroscopy[J]. Journal of Applied Physics, 2003, 93(5): 2400-2409.
[13] FUJIWARA H, TOYOSHIMA Y, KONDO M et al. Interface-layer formation mechanism in (formula presented) thin-film growth studied by real-time spectroscopic ellipsometry and infrared spectroscopy[J]. Physical Review B - Condensed Matter and Materials Physics, 1999, 60(19): 13598-13604.
[14] LEE W K, KO J S. Kinetic model for the simulation of hen egg white lysozyme adsorption at solid/water interface[J]. Korean Journal of Chemical Engineering, 2003, 20(3): 549-553.
[15] STAMATAKI K, PAPADAKIS V, EVEREST M A et al. Monitoring adsorption and sedimentation using evanescent-wave cavity ringdown ellipsometry[J]. Applied Optics, 2013, 52(5): 1086-1093.
[16] VIEGAS D, FERNANDES E, QUEIRóS R et al. Adapting Bobbert-Vlieger model to spectroscopic ellipsometry of gold nanoparticles with bio-organic shells[J]. Biomedical Optics Express, 2017, 8(8): 3538.
[17] ARWIN H. Application of ellipsometry techniques to biological materials[J]. Thin Solid Films, 2011, 519(9): 2589-2592.
[18] ZIMMER A, VEYS-RENAUX D, BROCH L et al. In situ spectroelectrochemical ellipsometry using super continuum white laser: Study of the anodization of magnesium alloy [J]. Journal of Vacuum Science & Technology B, 2019, 37(6): 062911.
[19] ZANGOOIE S, BJORKLUND R, ARWIN H. Water Interaction with Thermally Oxidized Porous Silicon Layers[J]. Journal of The Electrochemical Society, 1997, 144(11): 4027-4035.
[20] KYUNG Y B, LEE S, OH H et al. Determination of the optical functions of various liquids by rotating compensator multichannel spectroscopic ellipsometry[J]. Bulletin of the Korean Chemical Society, 2005, 26(6): 947-951.
[21] OGIEGLO W, VAN DER WERF H, TEMPELMAN K et al. Erratum to ― n-Hexane induced swelling of thin PDMS films under non-equilibrium nanofiltration permeation conditions, resolved by spectroscopic ellipsometry‖ [J. Membr. Sci. 431 (2013), 233-243][J]. Journal of Membrane Science, 2013, 437: 312..
[22] BROCH L, JOHANN L, STEIN N et al. Real time in situ ellipsometric and gravimetric monitoring for electrochemistry experiments[J]. Review of Scientific Instruments, 2007, 78(6).
[23] BISIO F, PRATO M, BARBORINI E et al. Interaction of alkanethiols with nanoporous cluster-assembled Au films[J]. Langmuir, 2011, 27(13): 8371-8376.
[24] 李廣立. 氧化亞銅薄膜的制備及其光電性能研究[D]. 西南交通大學, 2016.
[25] 董金礦. 氧化亞銅薄膜的制備及其光催化性能的研究[D]. 安徽建筑大學, 2014.
[26] 張楨. 氧化亞銅薄膜的電化學制備及其光催化和光電性能的研究[D]. 上海交通大學材料科 學與工程學院, 2013.
[27] DISSERTATION M. Cellulose Derivative and Lanthanide Complex Thin Film Cellulose Derivative and Lanthanide Complex Thin Film[J]. 2017.
[28] NIE J, YU X, HU D et al. Preparation and Properties of Cu2O/TiO2 heterojunction Nanocomposite for Rhodamine B Degradation under visible light[J]. ChemistrySelect, 2020, 5(27): 8118-8128.
[29] STRASSER P, GLIECH M, KUEHL S et al. Electrochemical processes on solid shaped nanoparticles with defined facets[J]. Chemical Society Reviews, 2018, 47(3): 715-735.
[30] XU Z, CHEN Y, ZHANG Z et al. Progress of research on underpotential deposition——I. Theory of underpotential deposition[J]. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2015, 31(7): 1219-1230.
[31] PANGAROV n. Thermodynamics of electrochemical phase formation and underpotential metal deposition[J]. Electrochimica Acta, 1983, 28(6): 763-775.
[32] KAYASTH S. ELECTRODEPOSITION STUDIES OF RARE EARTHS[J]. Methods in Geochemistry and Geophysics, 1972, 6(C): 5-13.
[33] KONDO T, TAKAKUSAGI S, UOSAKI K. Stability of underpotentially deposited Ag layers on a Au(1 1 1) surface studied by surface X-ray scattering[J]. Electrochemistry Communications, 2009, 11(4): 804-807.
[34] GASPAROTTO L H S, BORISENKO N, BOCCHI N et al. In situ STM investigation of the lithium underpotential deposition on Au(111) in the air- and water-stable ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide[J]. Physical Chemistry Chemical Physics, 2009, 11(47): 11140-11145.
[35] SARABIA F J, CLIMENT V, FELIU J M. Underpotential deposition of Nickel on platinum single crystal electrodes[J]. Journal of Electroanalytical Chemistry, 2018, 819(V): 391-400.
[36] BARD A J, FAULKNER L R, SWAIN E et al. Fundamentals and Applications[M]. John Wiley & Sons, Inc, 2001.
[37] SCHWEINER F, MAIN J, FELDMAIER M et al. Impact of the valence band structure of Cu2O on excitonic spectra[J]. Physical Review B, 2016, 93(19): 1-16.
[38] XIONG L, HUANG S, YANG X et al. P-Type and n-type Cu2O semiconductor thin films: Controllable preparation by simple solvothermal method and photoelectrochemical properties[J]. Electrochimica Acta, 2011, 56(6): 2735-2739.
[39] KAZIMIERCZUK T, FR?HLICH D, SCHEEL S et al. Giant Rydberg excitons in the copper oxide Cu2O[J]. Nature, 2014, 514(7522): 343-347.
[40] RAEBIGER H, LANY S, ZUNGER A. Origins of the p-type nature and cation deficiency in Cu2 O and related materials[J]. Physical Review B - Condensed Matter and Materials Physics, 2007, 76(4): 1-5.
[41] 舒云. Cu2O薄膜的電化學制備及其光電化學性能的研究[D]. 云南大學物理與天文學院厨喂,2019.
展示全部