依據(jù)實驗組前期對薄膜沉積的實驗础锐,選擇-0.4mA進行兩電極的恒流沉積,并用橢偏儀進行在位監(jiān)測逼裆,每沉積180s后進行300nm到800nm的橢偏測試。即在沉積180s赦政、360s胜宇、540s、720s恢着、900s桐愉、1080s后分別進行了橢偏儀全譜測試,測試角度為70°掰派。
展示全部
橢偏儀在位表征電化學沉積的系統(tǒng)搭建(二十五)- 全波段沉積過程的準在位測試分析-介電常數(shù)
介電常數(shù)(从诲、
)
圖4-7(a,c)是不同沉積時間介電常數(shù)實部e1隨波長變化圖靡羡,與折射率n的趨勢相似系洛。隨著時間的變化,值發(fā)生變化略步。當沉積時間為180s的時候描扯,在500-800nm長波范圍,其值從襯底的-20增加到-0.5趟薄,這也意味著新的物質(zhì)沉積绽诚,導(dǎo)致襯底的信息減少。在沉積時間增加到360s和540s時杭煎,整體上
值比180s減小了3左右恩够,在350nm附近出現(xiàn)一個較明顯的波包,同時在550nm附近出現(xiàn)一個波包羡铲。當沉積時間增加到720s之后蜂桶,
的值恢復(fù)到沉積180s附近,但是在500-800nm波段稍小也切,且在500nm附近出現(xiàn)波包屎飘。沉積時間為900s時,
值的變化和720s一致贾费,但是出現(xiàn)的波包位置大概在530nm附近钦购。當時間為1080s時,在300-500nm波段其值和720s一樣褂萧,在長波段稍大押桃,且出現(xiàn)了500nm和600nm附近的兩個波包。從圖4-7(a导犹,c)可以看出隨著沉積的變化唱凯,沉積的CU2O導(dǎo)致
值在500-600nm的時候有額外的峰出現(xiàn)羡忘,且和吸收系數(shù)一樣存在紅移現(xiàn)象。
圖4-7(b磕昼,d)是不同沉積時間下測得的介電常數(shù)虛部卷雕,隨著時間的變化,
值發(fā)生變化票从。當沉積時間為180s的時候漫雕,在500-800nm的長波范圍,其值大概從襯底的0增加到4峰鄙,同樣也意味著新的物質(zhì)沉積浸间,導(dǎo)致襯底的信息減少。在沉積時間增加到360s時吟榴,和180s比魁蒜,出現(xiàn)了兩個比較明顯的波包,大約在400nm和590nm附近吩翻。當沉積時間增加到540s之后兜看,
的值隨著波長減小,在600nm到800nm波段接近0狭瞎,且在470nm和550nm附近出現(xiàn)了波包铣减。沉積時間為720s時,其變化和360s一致脚作,但是出現(xiàn)的波包位置大概在400nm和550nm附近且波包變得更大葫哗。當時間為900s時,在300-500nm波段其值和360s一樣球涛,在400nm劣针、500nm和600nm附近出現(xiàn)波包。時間為1080s時亿扁,變換趨勢和900s相同捺典,只是波包在400nm、530nm和680nm附近出現(xiàn)从祝。從圖4-7(b襟己,d)可以看出隨著沉積的變化,沉積的CU2O導(dǎo)致
值在540s的時候zui為特殊牍陌,可能是由于沉積厚度引起擎浴。同樣的,也使得在500nm-600nm波段有新的峰出現(xiàn)毒涧,它也歸因于沉積物的出現(xiàn)贮预。
圖4-7不同沉積時間得到的橢偏數(shù)據(jù)圖(a,c),(b,d)
圖4-8是相對于0s時不同沉積時間的改變Δ
隨波長的變化圖仿吞』担可以看到相對于沒有沉積時,除了540s以外唤冈,其余的Δ
在300到530±20nm波段為負值峡迷,在530±20到800nm波段為正值,且變化趨勢一致你虹。540s的Δ
在整個波段除了580nm和660nm兩個點以外都是負值绘搞,但是在整體上的變化趨勢和其余時間大致一樣。說明隨著時間增加售葡,沉積表面對光的響應(yīng)一直在變化看杭,故而沉積的物相及表面粗糙度在變化忠藤。
圖4-8相對于0s時不同沉積時間的改變Δ
隨波長的變化圖
了解更多橢偏儀詳情挟伙,請訪問上海昊量光電的官方網(wǎng)頁:
http://www.wjjzl.com/three-level-56.html
更多詳情請聯(lián)系昊量光電/歡迎直接聯(lián)系昊量光電
關(guān)于昊量光電:
上海昊量光電設(shè)備有限公司是光電產(chǎn)品專業(yè)代理商,產(chǎn)品包括各類激光器模孩、光電調(diào)制器尖阔、光學測量設(shè)備、光學元件等榨咐,涉及應(yīng)用涵蓋了材料加工介却、光通訊、生物醫(yī)療块茁、科學研究齿坷、國防、量子光學数焊、生物顯微永淌、物聯(lián)傳感、激光制造等佩耳;可為客戶提供完整的設(shè)備安裝遂蛀,培訓(xùn),硬件開發(fā)干厚,軟件開發(fā)李滴,系統(tǒng)集成等服務(wù)。
您可以通過我們昊量光電的官方網(wǎng)站www.wjjzl.com了解更多的產(chǎn)品信息蛮瞄,或直接來電咨詢4006-888-532所坯。
參考文獻
[1] WONG H S P, FRANK D J, SOLOMON P M et al. Nanoscale cmos[J]. Proceedings of the IEEE, 1999, 87(4): 537-570.
[2] LOSURDO M, HINGERL K. ellipsometry at the nanoscale[M]. Springer Heidelberg New York Dordrecht London. 2013.
[3] DYRE J C. Universal low-temperature ac conductivity of macroscopically disordered nonmetals[J]. Physical Review B, 1993, 48(17): 12511-12526. DOI:10.1103/PhysRevB.48.12511.
[4] CHEN S, KüHNE P, STANISHEV V et al. On the anomalous optical conductivity dISPersion of electrically conducting polymers: Ultra-wide spectral range ellipsometry combined with a Drude-Lorentz model[J]. Journal of Materials Chemistry C, 2019, 7(15): 4350-4362.
[5] 陳籃,周巖. 膜厚度測量的橢偏儀法原理分析[J]. 大學物理實驗, 1999, 12(3): 10-13.
[6] ZAPIEN J A, COLLINS R W, MESSIER R. Multichannel ellipsometer for real time spectroscopy of thin film deposition from 1.5 to 6.5 eV[J]. Review of Scientific Instruments, 2000, 71(9): 3451-3460.
[7] DULTSEV F N, KOLOSOVSKY E A. Application of ellipsometry to control the plasmachemical synthesis of thin TiONx layers[J]. Advances in Condensed Matter Physics, 2015, 2015: 1-8.
[8] DULTSEV F N, KOLOSOVSKY E A. Application of ellipsometry to control the plasmachemical synthesis of thin TiONx layers[J]. Advances in Condensed Matter Physics, 2015, 2015: 1-8.
[9] YUAN M, YUAN L, HU Z et al. In Situ Spectroscopic Ellipsometry for Thermochromic CsPbI3 Phase Evolution Portfolio[J]. Journal of Physical Chemistry C, 2020, 124(14): 8008-8014.
[10] 焦楊景.橢偏儀在位表征電化學沉積的系統(tǒng)搭建.云南大學說是論文,2022.
[11] CANEPA M, MAIDECCHI G, TOCCAFONDI C et al. Spectroscopic ellipsometry of self assembLED monolayers: Interface effects. the case of phenyl selenide SAMs on gold[J]. Physical Chemistry Chemical Physics, 2013, 15(27): 11559-11565. DOI:10.1039/c3cp51304a.
[12] FUJIWARA H, KONDO M, MATSUDA A. Interface-layer formation in microcrystalline Si:H growth on ZnO substrates studied by real-time spectroscopic ellipsometry and infrared spectroscopy[J]. Journal of Applied Physics, 2003, 93(5): 2400-2409.
[13] FUJIWARA H, TOYOSHIMA Y, KONDO M et al. Interface-layer formation mechanism in (formula presented) thin-film growth studied by real-time spectroscopic ellipsometry and infrared spectroscopy[J]. Physical Review B - Condensed Matter and Materials Physics, 1999, 60(19): 13598-13604.
[14] LEE W K, KO J S. Kinetic model for the simulation of hen egg white lysozyme adsorption at solid/water interface[J]. Korean Journal of Chemical Engineering, 2003, 20(3): 549-553.
[15] STAMATAKI K, PAPADAKIS V, EVEREST M A et al. Monitoring adsorption and sedimentation using evanescent-wave cavity ringdown ellipsometry[J]. Applied Optics, 2013, 52(5): 1086-1093.
[16] VIEGAS D, FERNANDES E, QUEIRóS R et al. Adapting Bobbert-Vlieger model to spectroscopic ellipsometry of gold nanoparticles with bio-organic shells[J]. Biomedical Optics Express, 2017, 8(8): 3538.
[17] ARWIN H. Application of ellipsometry techniques to biological materials[J]. Thin Solid Films, 2011, 519(9): 2589-2592.
[18] ZIMMER A, VEYS-RENAUX D, BROCH L et al. In situ spectroelectrochemical ellipsometry using super continuum white laser: Study of the anodization of magnesium alloy [J]. Journal of Vacuum Science & Technology B, 2019, 37(6): 062911.
[19] ZANGOOIE S, BJORKLUND R, ARWIN H. Water Interaction with Thermally Oxidized Porous Silicon Layers[J]. Journal of The Electrochemical Society, 1997, 144(11): 4027-4035.
[20] KYUNG Y B, LEE S, OH H et al. Determination of the optical functions of various liquids by rotating compensator multichannel spectroscopic ellipsometry[J]. Bulletin of the Korean Chemical Society, 2005, 26(6): 947-951.
[21] OGIEGLO W, VAN DER WERF H, TEMPELMAN K et al. Erratum to ― n-Hexane induced swelling of thin PDMS films under non-equilibrium nanofiltration permeation conditions, resolved by spectroscopic ellipsometry‖ [J. Membr. Sci. 431 (2013), 233-243][J]. Journal of Membrane Science, 2013, 437: 312..
[22] BROCH L, JOHANN L, STEIN N et al. Real time in situ ellipsometric and gravimetric monitoring for electrochemistry experiments[J]. Review of Scientific Instruments, 2007, 78(6).
[23] BISIO F, PRATO M, BARBORINI E et al. Interaction of alkanethiols with nanoporous cluster-assembled Au films[J]. Langmuir, 2011, 27(13): 8371-8376.
[24] 李廣立. 氧化亞銅薄膜的制備及其光電性能研究[D]. 西南交通大學, 2016.
[25] 董金礦. 氧化亞銅薄膜的制備及其光催化性能的研究[D]. 安徽建筑大學, 2014.
[26] 張楨. 氧化亞銅薄膜的電化學制備及其光催化和光電性能的研究[D]. 上海交通大學材料科 學與工程學院, 2013.
[27] DISSERTATION M. Cellulose Derivative and Lanthanide Complex Thin Film Cellulose Derivative and Lanthanide Complex Thin Film[J]. 2017.
[28] NIE J, YU X, HU D et al. Preparation and Properties of Cu2O/TiO2 heterojunction Nanocomposite for Rhodamine B Degradation under visible light[J]. ChemistrySelect, 2020, 5(27): 8118-8128.
[29] STRASSER P, GLIECH M, KUEHL S et al. Electrochemical processes on solid shaped nanoparticles with defined facets[J]. Chemical Society Reviews, 2018, 47(3): 715-735.
[30] XU Z, CHEN Y, ZHANG Z et al. Progress of research on underpotential deposition——I. Theory of underpotential deposition[J]. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2015, 31(7): 1219-1230.
[31] PANGAROV n. Thermodynamics of electrochemical phase formation and underpotential metal deposition[J]. Electrochimica Acta, 1983, 28(6): 763-775.
[32] KAYASTH S. ELECTRODEPOSITION STUDIES OF RARE EARTHS[J]. Methods in Geochemistry and Geophysics, 1972, 6(C): 5-13.
[33] KONDO T, TAKAKUSAGI S, UOSAKI K. Stability of underpotentially deposited Ag layers on a Au(1 1 1) surface studied by surface X-ray scattering[J]. Electrochemistry Communications, 2009, 11(4): 804-807.
[34] GASPAROTTO L H S, BORISENKO N, BOCCHI N et al. In situ STM investigation of the lithium underpotential deposition on Au(111) in the air- and water-stable ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide[J]. Physical Chemistry Chemical Physics, 2009, 11(47): 11140-11145.
[35] SARABIA F J, CLIMENT V, FELIU J M. Underpotential deposition of Nickel on platinum single crystal electrodes[J]. Journal of Electroanalytical Chemistry, 2018, 819(V): 391-400.
[36] BARD A J, FAULKNER L R, SWAIN E et al. Fundamentals and Applications[M]. John Wiley & Sons, Inc, 2001.
[37] SCHWEINER F, MAIN J, FELDMAIER M et al. Impact of the valence band structure of Cu2O on excitonic spectra[J]. Physical Review B, 2016, 93(19): 1-16.
[38] XIONG L, HUANG S, YANG X et al. P-Type and n-type Cu2O semiconductor thin films: Controllable preparation by simple solvothermal method and photoelectrochemical properties[J]. Electrochimica Acta, 2011, 56(6): 2735-2739.
[39] KAZIMIERCZUK T, FR?HLICH D, SCHEEL S et al. Giant Rydberg excitons in the copper oxide Cu2O[J]. Nature, 2014, 514(7522): 343-347.
[40] RAEBIGER H, LANY S, ZUNGER A. Origins of the p-type nature and cation deficiency in Cu2 O and related materials[J]. Physical Review B - Condensed Matter and Materials Physics, 2007, 76(4): 1-5.
[41] 舒云. Cu2O薄膜的電化學制備及其光電化學性能的研究[D]. 云南大學物理與天文學院挂捅,2019.
展示全部