首頁(yè)  技術(shù)文章  橢偏儀在位表征電化學(xué)沉積的系統(tǒng)搭建(二十四)- 全波段沉積過(guò)程的準(zhǔn)在位測(cè)試分析-不同時(shí)間所測(cè)試的光學(xué)

橢偏儀在位表征電化學(xué)沉積的系統(tǒng)搭建(二十四)- 全波段沉積過(guò)程的準(zhǔn)在位測(cè)試分析-不同時(shí)間所測(cè)試的光學(xué)

發(fā)布時(shí)間:2024-05-06 15:40:11 瀏覽量:1426 作者:Alex

摘要

依據(jù)實(shí)驗(yàn)組前期對(duì)CU2O薄膜沉積的實(shí)驗(yàn)毯炮,選擇-0.4mA進(jìn)行兩電極的恒流沉積,并用橢偏儀進(jìn)行在位監(jiān)測(cè)耸黑,每沉積180s后進(jìn)行300nm到800nm的橢偏測(cè)試桃煎。即在沉積180s、360s大刊、540s为迈、720s、900s缺菌、1080s后分別進(jìn)行了橢偏儀全譜測(cè)試葫辐,測(cè)試角度為70°。

正文


橢偏儀在位表征電化學(xué)沉積的系統(tǒng)搭建(二十四)- 全波段沉積過(guò)程的準(zhǔn)在位測(cè)試分析-不同時(shí)間所測(cè)試的光學(xué)常數(shù)


不同時(shí)間所測(cè)試的光學(xué)常數(shù)(n伴郁,k)


從圖4-6(a耿战,c)中看,隨著時(shí)間的變化蛾绎,光學(xué)常數(shù)n值發(fā)生變化昆箕。當(dāng)沉積時(shí)間為180s的時(shí)候,在500-800nm的長(zhǎng)波范圍租冠,其值從襯底(0s)時(shí)接近0增加到1.3鹏倘,這也意味著新的物質(zhì)增加,導(dǎo)致襯底的信息減少顽爹。在沉積時(shí)間增加到360s時(shí)纤泵,在410nm附近處現(xiàn)一個(gè)較明顯的波包,同時(shí)在500-800nm區(qū)域出現(xiàn)一個(gè)波包,大約在700nm附近捏题。當(dāng)沉積時(shí)間增加到540s之后玻褪,n的值恢復(fù)到沉積180s附近」可以看出隨著沉積的變化带射,沉積的CU2O導(dǎo)致n值在360s的時(shí)候有額外的峰出現(xiàn)。


圖4-6(b循狰,d)中顯示吸收系數(shù)k值隨著時(shí)間的變化窟社,與反射率R的趨勢(shì)一致。在所測(cè)波長(zhǎng)范圍內(nèi)的k值在沉積過(guò)程都有所降低绪钥,特別是在長(zhǎng)波500-800nm的范圍內(nèi)明顯灿里。當(dāng)沉積時(shí)間為180s的時(shí)候,k的值大約從4.3降到1.5程腹,在波長(zhǎng)為300-500nm之間存在兩個(gè)波包(330nm匣吊,400nm)。當(dāng)沉積時(shí)間增加到360s時(shí)寸潦,在短波300-500nm的波包變得較明顯(330nm色鸳,380nm),整體的k值都有所增加甸祭。當(dāng)沉積時(shí)間增加到540s時(shí)缕碎,k的值大小恢復(fù)到沉積180s時(shí),但是在500-800nm范圍出現(xiàn)兩個(gè)波包(510nm池户,670nm)咏雌。到720s的時(shí)候,在500-800nm范圍只有一個(gè)大的波包校焦,并且k值較大赊抖。到900s和1080s時(shí),在500-800nm范圍時(shí)寨典,又出現(xiàn)兩個(gè)波包但是峰位有所變化氛雪。因此同樣的,k值顯示在360s比其它沉積時(shí)間有較大的吸收值耸成。由于隨著沉積時(shí)間的增加报亩,所沉積的物質(zhì)的物相可能發(fā)生變化以及厚度和表面粗糙度的變化。


新的物相會(huì)同時(shí)影響到折射率n和消光系數(shù)k井氢,在圖4-6(b弦追,d)吸收系數(shù)中觀察到在長(zhǎng)波范圍內(nèi)(500-800nm)的波包變化但是在圖4-6(a,c)中的折射率系數(shù)n卻沒(méi)有監(jiān)測(cè)到花竞,這意味著這個(gè)吸收系數(shù)的波包變化可能是沉積材料的厚度導(dǎo)致的劲件。對(duì)于沉積時(shí)間為360s時(shí),相對(duì)于其它沉積時(shí)間n值和k值都有很大的變化,這可能是360s時(shí)的物相較為特殊零远。由于物相包括新物質(zhì)或者是結(jié)構(gòu)苗分,如顆粒尺寸,所以這可能是由于在360s時(shí)沉積的CU2O成分或者是此時(shí)得到的顆粒尺寸或者結(jié)構(gòu)有所不同牵辣,需要進(jìn)一步驗(yàn)證摔癣。


圖4-6不同沉積時(shí)間得到的橢偏數(shù)據(jù)圖(a,c)n纬向,(b供填,d)k


了解更多橢偏儀詳情,請(qǐng)?jiān)L問(wèn)上海昊量光電的官方網(wǎng)頁(yè):


http://www.wjjzl.com/three-level-56.html


更多詳情請(qǐng)聯(lián)系昊量光電/歡迎直接聯(lián)系昊量光電

關(guān)于昊量光電:

上海昊量光電設(shè)備有限公司是光電產(chǎn)品專(zhuān)業(yè)代理商罢猪,產(chǎn)品包括各類(lèi)激光器、光電調(diào)制器叉瘩、光學(xué)測(cè)量設(shè)備膳帕、光學(xué)元件等,涉及應(yīng)用涵蓋了材料加工薇缅、光通訊危彩、生物醫(yī)療、科學(xué)研究泳桦、國(guó)防汤徽、量子光學(xué)、生物顯微灸撰、物聯(lián)傳感谒府、激光制造等;可為客戶提供完整的設(shè)備安裝浮毯,培訓(xùn)完疫,硬件開(kāi)發(fā),軟件開(kāi)發(fā)债蓝,系統(tǒng)集成等服務(wù)壳鹤。

您可以通過(guò)我們昊量光電的官方網(wǎng)站www.wjjzl.com了解更多的產(chǎn)品信息,或直接來(lái)電咨詢4006-888-532饰迹。


參考文獻(xiàn)

[1] WONG H S P, FRANK D J, SOLOMON P M et al. Nanoscale cmos[J]. Proceedings of the IEEE, 1999, 87(4): 537-570.

[2] LOSURDO M, HINGERL K. ellipsometry at the nanoscale[M]. Springer Heidelberg New York Dordrecht London. 2013.

[3] DYRE J C. Universal low-temperature ac conductivity of macroscopically disordered nonmetals[J]. Physical Review B, 1993, 48(17): 12511-12526. DOI:10.1103/PhysRevB.48.12511.

[4] CHEN S, KüHNE P, STANISHEV V et al. On the anomalous optical conductivity dISPersion of electrically conducting polymers: Ultra-wide spectral range ellipsometry combined with a Drude-Lorentz model[J]. Journal of Materials Chemistry C, 2019, 7(15): 4350-4362.

[5] 陳籃芳誓,周巖. 膜厚度測(cè)量的橢偏儀法原理分析[J]. 大學(xué)物理實(shí)驗(yàn), 1999, 12(3): 10-13.

[6] ZAPIEN J A, COLLINS R W, MESSIER R. Multichannel ellipsometer for real time spectroscopy of thin film deposition from 1.5 to 6.5 eV[J]. Review of Scientific Instruments, 2000, 71(9): 3451-3460.

[7] DULTSEV F N, KOLOSOVSKY E A. Application of ellipsometry to control the plasmachemical synthesis of thin TiONx layers[J]. Advances in Condensed Matter Physics, 2015, 2015: 1-8.

[8] DULTSEV F N, KOLOSOVSKY E A. Application of ellipsometry to control the plasmachemical synthesis of thin TiONx layers[J]. Advances in Condensed Matter Physics, 2015, 2015: 1-8.

[9] YUAN M, YUAN L, HU Z et al. In Situ Spectroscopic Ellipsometry for Thermochromic CsPbI3 Phase Evolution Portfolio[J]. Journal of Physical Chemistry C, 2020, 124(14): 8008-8014.

[10] 焦楊.橢偏儀在位表征電化學(xué)沉積的系統(tǒng)搭建.云南大學(xué)說(shuō)是論文,2022.

[11] CANEPA M, MAIDECCHI G, TOCCAFONDI C et al. Spectroscopic ellipsometry of self assembLED monolayers: Interface effects. the case of phenyl selenide SAMs on gold[J]. Physical Chemistry Chemical Physics, 2013, 15(27): 11559-11565. DOI:10.1039/c3cp51304a.

[12] FUJIWARA H, KONDO M, MATSUDA A. Interface-layer formation in microcrystalline Si:H growth on ZnO substrates studied by real-time spectroscopic ellipsometry and infrared spectroscopy[J]. Journal of Applied Physics, 2003, 93(5): 2400-2409.

[13] FUJIWARA H, TOYOSHIMA Y, KONDO M et al. Interface-layer formation mechanism in (formula presented) thin-film growth studied by real-time spectroscopic ellipsometry and infrared spectroscopy[J]. Physical Review B - Condensed Matter and Materials Physics, 1999, 60(19): 13598-13604.

[14] LEE W K, KO J S. Kinetic model for the simulation of hen egg white lysozyme adsorption at solid/water interface[J]. Korean Journal of Chemical Engineering, 2003, 20(3): 549-553.

[15] STAMATAKI K, PAPADAKIS V, EVEREST M A et al. Monitoring adsorption and sedimentation using evanescent-wave cavity ringdown ellipsometry[J]. Applied Optics, 2013, 52(5): 1086-1093.

[16] VIEGAS D, FERNANDES E, QUEIRóS R et al. Adapting Bobbert-Vlieger model to spectroscopic ellipsometry of gold nanoparticles with bio-organic shells[J]. Biomedical Optics Express, 2017, 8(8): 3538.

[17] ARWIN H. Application of ellipsometry techniques to biological materials[J]. Thin Solid Films, 2011, 519(9): 2589-2592.

[18] ZIMMER A, VEYS-RENAUX D, BROCH L et al. In situ spectroelectrochemical ellipsometry using super continuum white laser: Study of the anodization of magnesium alloy [J]. Journal of Vacuum Science & Technology B, 2019, 37(6): 062911.

[19] ZANGOOIE S, BJORKLUND R, ARWIN H. Water Interaction with Thermally Oxidized Porous Silicon Layers[J]. Journal of The Electrochemical Society, 1997, 144(11): 4027-4035.

[20] KYUNG Y B, LEE S, OH H et al. Determination of the optical functions of various liquids by rotating compensator multichannel spectroscopic ellipsometry[J]. Bulletin of the Korean Chemical Society, 2005, 26(6): 947-951.

[21] OGIEGLO W, VAN DER WERF H, TEMPELMAN K et al. Erratum to n-Hexane induced swelling of thin PDMS films under non-equilibrium nanofiltration permeation conditions, resolved by spectroscopic ellipsometry[J. Membr. Sci. 431 (2013), 233-243][J]. Journal of Membrane Science, 2013, 437: 312..

[22] BROCH L, JOHANN L, STEIN N et al. Real time in situ ellipsometric and gravimetric monitoring for electrochemistry experiments[J]. Review of Scientific Instruments, 2007, 78(6).

[23] BISIO F, PRATO M, BARBORINI E et al. Interaction of alkanethiols with nanoporous cluster-assembled Au films[J]. Langmuir, 2011, 27(13): 8371-8376.

[24] 李廣立. 氧化亞銅薄膜的制備及其光電性能研究[D]. 西南交通大學(xué), 2016.

[25] 董金礦. 氧化亞銅薄膜的制備及其光催化性能的研究[D]. 安徽建筑大學(xué), 2014.

[26] 張楨. 氧化亞銅薄膜的電化學(xué)制備及其光催化和光電性能的研究[D]. 上海交通大學(xué)材料科 學(xué)與工程學(xué)院, 2013.

[27] DISSERTATION M. Cellulose Derivative and Lanthanide Complex Thin Film Cellulose Derivative and Lanthanide Complex Thin Film[J]. 2017.

[28] NIE J, YU X, HU D et al. Preparation and Properties of Cu2O/TiO2 heterojunction Nanocomposite for Rhodamine B Degradation under visible light[J]. ChemistrySelect, 2020, 5(27): 8118-8128.

[29] STRASSER P, GLIECH M, KUEHL S et al. Electrochemical processes on solid shaped nanoparticles with defined facets[J]. Chemical Society Reviews, 2018, 47(3): 715-735.

[30] XU Z, CHEN Y, ZHANG Z et al. Progress of research on underpotential deposition——I. Theory of underpotential deposition[J]. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2015, 31(7): 1219-1230.

[31] PANGAROV n. Thermodynamics of electrochemical phase formation and underpotential metal deposition[J]. Electrochimica Acta, 1983, 28(6): 763-775.

[32] KAYASTH S. ELECTRODEPOSITION STUDIES OF RARE EARTHS[J]. Methods in Geochemistry and Geophysics, 1972, 6(C): 5-13.

[33] KONDO T, TAKAKUSAGI S, UOSAKI K. Stability of underpotentially deposited Ag layers on a Au(1 1 1) surface studied by surface X-ray scattering[J]. Electrochemistry Communications, 2009, 11(4): 804-807.

[34] GASPAROTTO L H S, BORISENKO N, BOCCHI N et al. In situ STM investigation of the lithium underpotential deposition on Au(111) in the air- and water-stable ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide[J]. Physical Chemistry Chemical Physics, 2009, 11(47): 11140-11145.

[35] SARABIA F J, CLIMENT V, FELIU J M. Underpotential deposition of Nickel on platinum single crystal electrodes[J]. Journal of Electroanalytical Chemistry, 2018, 819(V): 391-400.

[36] BARD A J, FAULKNER L R, SWAIN E et al. Fundamentals and Applications[M]. John Wiley & Sons, Inc, 2001.

[37] SCHWEINER F, MAIN J, FELDMAIER M et al. Impact of the valence band structure of Cu2O on excitonic spectra[J]. Physical Review B, 2016, 93(19): 1-16.

 [38] XIONG L, HUANG S, YANG X et al. P-Type and n-type Cu2O semiconductor thin films: Controllable preparation by simple solvothermal method and photoelectrochemical properties[J]. Electrochimica Acta, 2011, 56(6): 2735-2739.

[39] KAZIMIERCZUK T, FR?HLICH D, SCHEEL S et al. Giant Rydberg excitons in the copper oxide Cu2O[J]. Nature, 2014, 514(7522): 343-347.

[40] RAEBIGER H, LANY S, ZUNGER A. Origins of the p-type nature and cation deficiency in Cu2 O and related materials[J]. Physical Review B - Condensed Matter and Materials Physics, 2007, 76(4): 1-5.

[41] 舒云. Cu2O薄膜的電化學(xué)制備及其光電化學(xué)性能的研究[D]. 云南大學(xué)物理與天文學(xué)院,2019.

閱讀延伸

展示全部  up

国产福利姬视频在线观看,国产原创激情在线观看网站,亚洲欧美日韩激色国产精品,日韩精品亚洲国产